K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

ĐKXĐ: \(x\le1\)

+) Xét \(x=0\) thỏa mãn.

+) Xét \(x\ne0\):

Nhân cả 2 vế của phương trình với \(\left(1+\sqrt{1-x}\right)\) ta được:

\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)

Đặt \(\sqrt{1-x}=a\left(a\ge0\right)\), khi đó \(2-x=a^2+1\)

\(pt\Leftrightarrow\sqrt[3]{a^2+1}=1+a\)

\(\Leftrightarrow a^2+1=\left(a+1\right)^3=a^3+3a^2+3a+1\)

\(\Leftrightarrow a^3+2a^2+3a=0\)

\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(C\right)\\\left(a+1\right)^2+2=0\left(L\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{1-x}=0\)

\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy tập nghiệm của phương trình là \(x=\left\{0;1\right\}\)

13 tháng 3 2021

Lại bị lỗi công thức :((

Nhân cả hai vế của phương trình với \(1+\sqrt{1-x}\) ta được:

\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 3 2021

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

7 tháng 3 2021

Quoc Tran Anh Le CTV Chưa ra bài tiếp à!?

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

1. ĐKXĐ: $x\geq \frac{-3}{5}$

PT $\Leftrightarrow 5x+3=3-\sqrt{2}$

$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

2. ĐKXĐ: $x\geq \sqrt{7}$ 

PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$

$\Leftrightarrow x-49=4$

$\Leftrightarrow x=53$ (thỏa mãn)

 

4 tháng 2 2018

\(x^3+\left(x+1\right)\sqrt{x+1}+2\sqrt{2}=\left(x+\sqrt{x+1}+\sqrt{2}\right)^3\)   ( 1 )

\(ĐKXĐ:x\ge-1\)

Đặt: \(y=\sqrt{x+1};z=\sqrt{2}\)khi đó ( 1 ) có dạng \(x^3+y^3+z^3=\left(x+y+z\right)^3\)( 2 )

Chứng minh được ( 2 ) \(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

\(x+y=0\Leftrightarrow x+\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=-x\Rightarrow x=\frac{1-\sqrt{5}}{2}\)( thoản mãn )

\(x+z=0\Leftrightarrow x+\sqrt{2}=0\Leftrightarrow x=-\sqrt{2}\)( không thỏa mãn )

\(y+z=0\Leftrightarrow\sqrt{x+1}+\sqrt{2}=0\)( vô nghiệm )

Vậy pt có nghiêm duy nhất là : \(\frac{1-\sqrt{5}}{2}\)

20 tháng 1 2023

Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)

P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)

Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó : 

\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)

Với t = 4  hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ... 

 

20 tháng 1 2023