K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2020

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)

Vậy B = - 2016

Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?

26 tháng 2 2019

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+\frac{2016}{998}+...+\frac{2016}{501}}{-\frac{1}{1\cdot2}-\frac{1}{3\cdot4}-\frac{1}{5\cdot6}-...-\frac{1}{999\cdot1000}}\)

\(B=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{999\cdot1000}\right)}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{500}\right)}\)

\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}\)

\(B=\frac{2016}{-1}=-2016\)

26 tháng 2 2019

cảm ơn bạn Phương Uyên

21 tháng 8 2016

\(\frac{2015}{2016}< \frac{2016}{2017}\)

\(\frac{1000}{100}< \frac{1000}{99}\)

nhé bạn

21 tháng 8 2016

2015/2016<2016/2017

1001/1000<1000/999

1 tháng 7 2019

a) 2015^2016+2015^2015=2015^2015 .(2015+1) =2015^2015 .2016 < 2016^2015 . 2016 =2016^2016 

Vậy 2015^2016+2015^2015< 2016^2016 

b)5^299 < 5^300 = (5^2)^150 =25^150 < 27^150 =(3^3)^150 = 3^450 <3^501

Vậy 5^299 < 3^501

1 tháng 4 2021

P(x) = x2019 - 1000x2018 + 1000x2017 - 1000x2016 + ... + 1000x - 1

Với x = 999 => 1000 = x + 1

=> P(999) = x2019 - ( x + 1 )x2018 + ( x + 1 )x2017 - ( x + 1 )x2016 + ... + ( x + 1 )x - 1

= x2019 - x2019 - x2018 + x2018 + x2017 - x2017 - x2016 + ... + x2 + x - 1

= x - 1 = 999 - 1 = 998

Vậy ...