K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(4^2-2\left(m-1\right)=30\)

\(2m-2=-14\)

\(m=-6\)

DD
10 tháng 5 2022

Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì 

\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)

Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).

Theo định lí Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: 

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)

\(\Leftrightarrow m=-6\) (thỏa mãn) 

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(\Leftrightarrow4^2-2\left(m-1\right)=30\)

\(\Leftrightarrow2m-2=-14\)

\(\Leftrightarrow m=-6\)

21 tháng 5 2017

Theo hệ thức Vi-ét ta có:

x1+x2=\(-\frac{-1}{1}=1\)

x1x2=\(\frac{1+m}{1}=1+m\)

=> x1x2(x1x2-2)=3(x1+x2)

<=> (1+m)(1+m-2)=3

<=> m2-1=3

<=>m2=4

<=> m=-2 hoặc m =2 (loại)

Vậy m = -2

23 tháng 2 2022

a,Thay m=2 vào pt :

\(\left(1\right)\Leftrightarrow x^2-4x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-2\right)^2-1\left(m+1\right)\ge0\\ \Leftrightarrow4-m-1\ge0\\ \Leftrightarrow3-m\ge0\\ \Leftrightarrow m\le3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)

\(x^2_1+x^2_2=5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5.4\\ \Leftrightarrow4^2-2\left(m+1\right)=20\\ \Leftrightarrow16-2m-2-20=0\\ \Leftrightarrow m=-3\left(tm\right)\)

23 tháng 2 2022

a)Thay \(m=2\) vào (1) ta đc:

  \(x^2-4x+2+1=0\Rightarrow x^2-4x+3=0\)

  \(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

  \(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b)Áp dụng hệ thức Viet:

   \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{4}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m+1\end{matrix}\right.\) (*)

   Theo bài: \(x_1^2+x^2_2=5\left(x_1+x_2\right)\)

    \(\Rightarrow\left(x_1+x_2\right)^2-2x_1\cdot x_2=5\left(x_1+x_2\right)\)

    \(\Rightarrow4^2-2\cdot\left(m+1\right)=5\cdot4\)

    \(\Rightarrow m=-1\)

7 tháng 5 2018

Chọn A

29 tháng 3 2017

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)

=>(x1-1)[x2^2-x2(x1+x2-1)+x1x2+1]=-3

=>(x1-1)[-x1x2+x2+x1x2+1]=-3

=>(x1-1)(x2+1)=-3

=>x1x2+(x1-x2)-1=-3

=>(x1-x2)=-3+1-x1x2=-2-m+5=-m+3

=>(x1+x2)^2-4x1x2=m^2-6m+9

=>4^2-4(m-5)=m^2-6m+9

=>4m-20=16-m^2+6m-9=-m^2+6m+7

=>4m-20+m^2-6m-7=0

=>m^2-2m-27=0

=>\(m=1\pm2\sqrt{7}\)