Tìm n thuộc N để phân số A = 6n-3/4n-6 đạt GTLN. Tìm GTLN đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
a) Ta có: B = \(\frac{4n+1}{2n-3}\) (n thuộc Z)
Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)
=> 4n + 1 ⋮ 2n - 3
=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3
=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3
=> 4n + 1 - (4n - 6) chia hết cho 2n - 3
=> 4n + 1 - 4n + 6 chia hết cho 2n - 3
=> 4n - 4n + 1 + 6 chia hết cho 2n - 3
=> 7 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
Ư(7) = {1; 7; -1; -7}
Lập bảng:
2n - 3 = | 1 | 7 | -1 | -7 |
n = | 2 | 5 | 1 | -2 |
(loại vì không phải scp) | (loại) | (loại) |
Vậy n = {2; -2} thì B là số chính phương
b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3 (ta chỉ cần loại những số n trong bảng)
=> n không thuộc {2; 5; 1; -2}
c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0
=> 2n - 3 = 1
=> 2n = 1 + 3
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2 thì B đạt GTLN
b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d
=> 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d
=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)
c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).
Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.
2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm.
Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất.
=> 2n - 3 đặt giá trị dương nhỏ nhất .
Ta có:\(B=\frac{8n+3}{4n-10}=\frac{8n-20+23}{4n-10}=\frac{2\left(4n-10\right)+23}{4n-10}=2+\frac{23}{4n-10}\)
B LN khi và chỉ khi 4n-10 là số tự nhiên khác 0 nhỏ nhất,mà 4n-10 là số chắn
Suy ra B LN khi và chỉ khi 4n-10=2 suy ra n=3
Vậy B đạt GTLN là 13,5 khi và chỉ khi n=3
a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3
Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 4n - 6 chia hết cho 2n + 3
=> -5 chia hết cho 2n + 3
=> 2n + 3 thuộc {-1; 1; -5; 5}
=> 2n thuộc {-4; -2; -8; 2}
=> n thuộc {-2; -1; -4; 1}
b, Ta có:
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
+ Lớn nhất xét tương tự
Để B đạt GTLN thì 2B đạt GTLN
Ta có:
\(2B=2.\frac{10n-3}{4n-10}=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=\frac{5.\left(4n-10\right)+44}{4n-10}\)
\(2B=\frac{5.\left(4n-10\right)}{4n-10}+\frac{44}{4n-10}=5+\frac{44}{4n-10}\)
Để 2B đạt GTLN thì \(\frac{44}{4n-10}\) đạt GTLN
=> 4n - 10 đạt GTNN
+ Với x < 3 thì 4n - 10 < 0, khi đó \(\frac{44}{4n-10}< 0\)
+ Với \(x\ge3\) thì 4n - 10 > 0, khi đó \(\frac{44}{4n-10}\) > 0
Mà n nhỏ nhất => n = 3
Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN
Thay n = 3 vào B ta có:
\(B=\frac{10.3-3}{4.3-10}=\frac{30-3}{12-10}=\frac{27}{2}\)
Vậy với n = 3 thì B đạt GTNN = \(\frac{27}{2}\)