Có 2 bình cách nhiệt, bình 1 chứa 200g nước và một cục nước đá nặng 50g, bình 2 chứa 600g nước ở 60 độ.
Rót nước từ bình 1 sang bình 2 đợi khi có cân bằng nhiệt thì rót từ bình 2 sang bình 1 lượng nước như cũ. Cuối cùng, bình 1 có cân bằng nhiệt ở 20 độ. Tính m nước đã rót qua rót về. Cần gấp nha m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở bình 1 đá và nước cùng tồn tại cân bằng nhiệt nên nhiêt độ hệ là 0 độ C
gọi nhiệt độ cb ở bình 2 là x
ta có đổ m kg nước từ bình 1 sang bình 2 cân bằng nhiệt
\(m.4200.x=0,45.4200.\left(80-x\right)\Leftrightarrow mx=0,45.\left(80-x\right)\left(1\right)\)
đổ m kg nước lại bình 1
\(m.4200.\left(x-20\right)=0,06.336000+\left(0,21-m\right).4200.20\)
\(\Leftrightarrow m4200.x=37800\left(2\right)\)
chia 2 vế (1) cho (2) \(\Rightarrow x=60^oC\)
thay x vào (1) \(\Rightarrow m=0,15\left(kg\right)\)
Gọi \(m\) là khối lượng nước rót cần tìm
Lần thứ nhất :\(m.c.\left(t-t_1\right)=m_2.c.\left(t_2-t\right)\)\(\Rightarrow m\left(t-20\right)=4.\left(60-t\right)\)\(\Rightarrow m=\frac{4.\left(60-t\right)}{t-20}\left(1\right)\)
Lần thứ hai :
\(m.c\left(t-t'\right)=\left(m_1-m\right).c\left(t'-t_1\right)\)
\(\Rightarrow m.\left(t-21,5\right)=\left(2-m\right).\left(21,5-20\right)\)
\(\Rightarrow m\left(t-21,5\right)=\left(2-m\right).1,5\left(2\right)\)
Thay thế vào :
Ta được : \(t=59,25^0C\left(3\right)\)
Thay thế (3) vào (1) ta được:
m₁ = 2kg
t₁ = 20ºC
m₂ = 4kg
t₂ = 60ºC
t₁' = 21,5ºC
gọi c là nhiệt dung riêng của nước
khi rót lần thứ nhất thì m(kg) nước ở t₁ = 20ºC thu nhiệt, nước bình 2 tỏa nhiệt
nhiệt độ cân bằng là t₂' (ºC) với 20 < t₂' < 60
ta có Phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(t₂'-t₁) = cm₂(t₂-t₂')
m(t₂'-20) = 4(60-t₂') (1)
khi rót lần thứ 2 về bình 1 một lượng nước là m (kg) nước thì m (kg) nước ở t₂' > 20ºC = t₁ nên m(kg) nước tỏa nhiệt, nước trong bình m₁ thu nhiệt, nhiệt độ cân bằng là t₁' = 21,5ºC
* lượng nước trong bình m₁ bây h là m₁ - m
ta có phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm₁(t₁'-t₁) = cm(t₂'-t₁')
(2-m)(21,5 - 20) = m(t₂' - 21,5)
(2-m)1,5 = m(t₂' - 21,5)
m(t₂' - 21,5) = 1,5(2-m)
mt₂' - 21,5m = 3 - 1,5m
mt₂' - 20m = 3
m(t₂'-20) = 3 (2)
từ (1) và (2) ta có hệ:
[ m(t₂'-20) = 4(60-t₂')
[ m(t₂'-20) = 3 (2)
ta đc:
4(60-t₂') = 3
240 - 4t₂' = 3
=> 4t₂ = 237
=> t₂ = 59,25 (ºC)
=> m = 3/(t₂' - 20) = 3/(59,25 - 20)
m ~ 0,07 (kg) = 70 g
lần rót thứ 2: rót m = 0,07 kg từ bình 1 sang bình 2
bình 2 đang có 2kg nước ở t₂' = 59,25ºC
m (kg) nước ở t₁' = 21,5ºC
vậy nước bình 2 tỏa nhiệt, m kg nước thu nhiệt
nhiệt độ cân bằng là T ºC vs 21,5 < T < 59,25
phương trình cân bằng nhiệt:
Qthu = Qtỏa
cm(T-t₁') = cm₂(t₂'-T)
0,07.(T - 21,5) = 4(59,25-T)
0,07T - 1,505 = 237 - 4T
4,007T = 238,505
=> T = 59,5 (ºC)
Ta có phương trình cân bằng nhiệt ( lần 1)
\(Q_{toả_1}=Q_{thu_1}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt ( lần 2 )
\(Q_{toả_2}=Q_{thu_2}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=\left(2-m\right)c.1,95\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\Leftrightarrow\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\)
Giải phương trình trên ta được
\(\Rightarrow m\approx0,1kg\)
Thay m = 0,1kg ta được
\(\Leftrightarrow t_{cb}=59^o\)
Ta có phương trình cân bằng nhiệt lần 3
\(Q_{toả_3}=Q_{thu_3}\\ \Leftrightarrow4c\left(59-t_{cb}\right)=0,1c\left(t_{cb}-21,95\right)\\ \Rightarrow t_{cb}=58,1\)
a. Nhiệt độ cân bằng ở bình 2 và lượng nước đã rót là:
\(Q_{toa}=Q_{thu}\)
\(<=> m_2c(t_2-t)=mc(t-t_1)\)
\(<=> 4(60-t)=m(t-20)\)
\(<=> m=\dfrac{4(60-t)}{t-20}(1)\)
\(Q_{toa}=Q_{thu}\)
\(<=> mc(t-t')=(m_1-m)c(t'-t_1)\)
\(<=> m(t-21,95)=(2-m)(21,95-20)\)
\(<=> m(t-21,95)=3,9-1,95 m\)
\(<=> m(t-20)=3,9=> m=\dfrac{3,9}{t-20}(2)\)
Từ \((1)(2)\) \(=> \dfrac{4(60-t)}{t-20}=\dfrac{3,9}{t-20}\)
\(<=> 240-4t=3,9\)
\(<=> 4t=236,1=> t=59,025^oC\)
\(=> m=\dfrac{3,9}{59,025-20}=0,1kg\)
b. Nếu tiếp tục thực hiện lần thứ hai nhiệt độ cân bằng ở mỗi bình là:
\(Q_{toa}=Q_{thu}\)
\(<=> m_2c(t-t_2')=mc(t_2'-t')\)
\(<=> 4(59,025-t_2')=0,1(t_2'-21,95)\)
\(<=> t_2'=58,12^oC\)
\(Q_{toa}=Q_{thu}\)
\(<=>mc(t_2'-t_1')=(m_1-m)c(t_1'-t_1)\)
\(<=>0,1(58,12-t_1')=(2-0,1)(t_1'-21,95)\)
\(<=>t_1'=23,76^oC\)
Ta có phương trình cân bằng nhiệt lần 1
\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow240-4t_{cb_1}=mt_{cb_1}-20m\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt lần 2
\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=2-mc.1,95\\ \Leftrightarrow mt_{cb_1}=3,9-1,95m+21,95m\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\Rightarrow240m+20m^2=3,9m+20m^2+15,6+80m\\ \Leftrightarrow m\approx0,1\)
Đáp án : B
- Giả sử khi rót lượng nước m (kg) từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.c.(t - t 1 ) = m 2 .c.( t 2 - t)
⇒ m.(t - t 1 ) = m 2 .( t 2 - t) (1)
- Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t ' = 21,95°C và lượng nước trong bình 1 lúc này chỉ còn ( m 1 - m) nên ta có phương trình cân bằng:
m.c(t - t ' ) = ( m 1 - m).c( t ' - t 1 )
⇒ m.(t - t ' ) = ( m 1 - m).( t ' - t 1 )
⇒ m.(t – t ' ) = m 1 .( t ' – t1) – m.( t ' – t 1 )
⇒ m.(t – t ' ) + m.( t ' – t1) = m 1 ( t ' – t 1 )
⇒ m.(t – t 1 ) = m 1 .( t ' – t 1 ) (2)
- Từ (1) và (2) ta có pt sau:
m 2 .( t 2 - t) = m 1 .( t ' - t 1 )
⇒ 4.(60 – t) = 2.(21,95 – 20)
⇒ t = 59,025°C
- Thay vào (2) ta được
m.(59,025 – 20) = 2.(21,95 – 20)
⇒ m = 0,1 (kg)