Một đoạn mạch gồm hai điện trở R1=15 ôm và R2=30 ôm mắc song song với nhau điện trở tương đương của đoạn mạch là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{9.18}{9+18}=6\left(\Omega\right)\)
b. \(U=U1=U2=I1.R1=0,5.9=4,5V\left(R1\backslash\backslash\mathbb{R}2\right)\)
c. \(\left\{{}\begin{matrix}I2=U2:R2=4,5:18=0,25A\\I=I1+I2=0,5+0,25=0,75A\end{matrix}\right.\)
Đáp án:
a. Rtđ=100ΩRtđ=100Ω
b. I1=I2=1,2(A)I1=I2=1,2(A)
Giải thích các bước giải:
a. Điện trở tương đương của đoạn mạch là:
Rtđ=R1+R2=60+40=100(Ω)Rtđ=R1+R2=60+40=100(Ω)
b. Cường độ dòng điện chạy qua mạch chính bằng cường độ dòng điện chạy qua các điện trở và bằng:
I=I1=I2=URtđ=120100=1,2(A)I=I1=I2=URtđ=120100=1,2(A)
MCD: R1//R2
\(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{60\cdot120}{60+120}=40\left(\Omega\right)\)
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
tóm tắc
\(R_1=R_2=6\left(\text{ Ω}\right)\)
\(R_{tđ}=?\)
Giải
Điện trở tương đương của đoạn mạch là:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}\Rightarrow R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{6.6}{6+6}=3\left(\text{Ω}\right)\)
Đáp số : \(R_{tđ}=3\text{Ω}\)
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{10.15}{10+15}=6\left(\Omega\right)\)
Rtđ = R1*R2/R1+R2 = 15*30/15+30 = 10 (Ω)
Điện trở tương đương của mạch điện :
\(\dfrac{1}{R_{td}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}=\dfrac{1}{15}+\dfrac{1}{30}=\dfrac{1}{10}\Rightarrow R_{td}=10\Omega\)