K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEDA vuông tại D và ΔEBA vuông tại B có

EA chung

\(\widehat{DEA}=\widehat{BEA}\)

Do đó: ΔEDA=ΔEBA

b: Ta có: ΔEDA=ΔEBA
nên DA=BA

c: Ta có: ΔEDA=ΔEBA

nên ED=EB

hay E nằm trên đường trung trực của DB(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của DB(2)

Từ (1) và (2) suy ra AE là đường trung trực của DB

a: Xét ΔEDK có 

EM là đường cao

EM là đường phân giác

Do đó: ΔEDK cân tại E

b: Xét ΔEDM và ΔEKM có

ED=EK

\(\widehat{DEM}=\widehat{KEM}\)

EM chung

DO đó: ΔEDM=ΔEKM

Suy ra: DM=DK

mà ED=EK

nên EM là đường trung trực của DK

24 tháng 12 2021

🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲

a) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

b) Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(Hai cạnh tương ứng)

Ta có: BA=BE(cmt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AD=ED(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra DB là đường trung trực của AE(đpcm)

a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có

MB=MC

góc B=góc C

=>ΔEBM=ΔFCM

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

d: Xet ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C