K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

ý là you là học sinh giỏi chứ j
 

18 tháng 4 2016

Nó thì cô giải cho rồi, nó biết là phải

24 tháng 4 2015

   (3/429 - 1/1.3)(3/429 - 1/3.5) ... (3/429 - 1/121.123)

= (1/143 - 1/1.3)(1/143 - 1/3.5) ... (1/143 - 1/11.13) ... (1/143 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... (1/11.13 -1/11.13) ... (1/11.13 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... 0 ... (1/11.13 - 1/121.123)

= 0

24 tháng 4 2015

=(1/143-1/1.3)...(1/143-1/121.123)

vì trong tích có thừa số (1/143-1/11.13)=0

nên cả tích =0

LÀM ƠN LIKE CHO MÌNH ĐI

24 tháng 4 2015

   (3/429 - 1/1.3)(3/429 - 1/3.5) ... (3/429 - 1/121.123)

= (1/143 - 1/1.3)(1/143 - 1/3.5) ... (1/143 - 1/11.13) ... (1/143 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... (1/11.13 -1/11.13) ... (1/11.13 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... 0 ... (1/11.13 - 1/121.123)

= 0

2 tháng 11 2018

\(\left(\frac{3}{1.3}+\frac{3}{3.5}+.......+\frac{3}{97.99}\right).\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{2}{97.99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{97}-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\left(\frac{3}{2}.\frac{98}{99}\right).\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\frac{49}{33}.\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\frac{49}{33}.2x+\frac{49}{33}=x+\frac{1}{33}\)

\(\Rightarrow\frac{98}{33}.x+\frac{49}{33}=x+\frac{1}{33}\)

\(\Rightarrow\frac{98}{33}.x-x=\frac{1}{33}-\frac{49}{33}\)

\(\Rightarrow\frac{65}{33}.x=\frac{-16}{11}\)

\(\Rightarrow x=\frac{-16}{11}:\frac{65}{33}\)

\(\Rightarrow x=\frac{-48}{65}\)

Vậy \(x=\frac{-48}{65}\)

31 tháng 1 2017

để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)

+ 1+1/1.3=22/1.3 ;...... 

\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)

\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)

\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)

\(\Leftrightarrow X=\frac{109}{6075}\)

Vậy X=109/6075

Chắc Sai kết quả chứ công thức đúng nha!!!...

Fighting!!!...

28 tháng 5 2019

Đặt: 

 \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)

=> \(A=\frac{12}{25}\)

Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

   \(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)

=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)

Giải phương trình:

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)

                        \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)

                                                                            \(12x+\frac{12}{25}=11x+\frac{121}{243}\)

                                                                             \(12x-11x=\frac{121}{243}-\frac{12}{25}\)

                                                                                                  \(x=\frac{109}{6075}\)