Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí hàm số cosin:
\(a^2=b^2+c^2-2bc.cosA=6^2+4^2-2.6.4.cos120^o=76\Rightarrow a=2\sqrt{19}\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{76+16-36}{2.2\sqrt{19}.4}=\dfrac{7\sqrt{19}}{38}\)
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{76+36-16}{2.2\sqrt{19}.6}=\dfrac{4\sqrt{19}}{19}\)
c) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)
Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)
nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)
mà \(\widehat{B}+\widehat{C}=140^0\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)
mà cạnh đối diện với \(\widehat{A}\) là cạnh BC
cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC<AC<AB
A: B : C = 3: 4 : 5 => góc C có số đo lớn nhất => cạnh đối diện với góc C là cạnh lớn nhất
=> cạnh lớn nhất là cạnh AB
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(2x+1\right)^2+\left(x^2-1\right)^2-\left(x^2+x+1\right)^2}{2\left(2x+1\right)\left(x^2-1\right)}\)
\(=\dfrac{-2x^3-x^2+2x+1}{2\left(2x+1\right)\left(x^2-1\right)}=\dfrac{-\left(2x+1\right)\left(x^2-1\right)}{2\left(2x+1\right)\left(x^2-1\right)}=-\dfrac{1}{2}\)
\(\Rightarrow A=120^0\)
a2 = b2 + c2 - 2bc.cos1200
⇔ a2 = 76
⇔ a = \(2\sqrt{19}\)
Theo định lí sin: \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
⇔ \(\dfrac{2\sqrt{19}}{sin120}=\dfrac{6}{sinB}=\dfrac{4}{sinC}\)
⇔ \(\left\{{}\begin{matrix}sinC=\dfrac{\sqrt{57}}{19}\\sinB=\dfrac{3\sqrt{57}}{38}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=36^035'\\\widehat{C}=23^025'\end{matrix}\right.\)
CosB cosC