Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. AD là phân giác của tam giác ABC. Kẻ DE vuông góc với AC.
a, Chứng minh DH = ED
b, Gọi K là giao điểm DE và AH. Chứng minh tam giác ACK cân
C, Chứng minh tam giác KHE = tam giác CEH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó: ΔAHD=ΔAED
Suy ra: DH=DE
b: Ta có: ΔAED=ΔAHD
nên AE=AH
Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)
Do đó: ΔDHK=ΔDEC
Suy ra: HK=EC
Ta có: AH+HK=AK
AE+EC=AC
mà AH=AE
và HK=EC
nên AK=AC
Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
c: Ta có: ΔDHK=ΔDEC
nên DK=DC
mà EC<DC
nên EC<DK
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó: ΔAHD=ΔAED
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
Xét ΔABD có \(\widehat{BAD}=\widehat{BDA}\)
nên ΔBAD cân tại B
c: Xét ΔHDK vuông tại H và ΔEDC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)
Do đó: ΔHDK=ΔEDC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc FBE chung
=>ΔBEF=ΔBAC
=>BF=BC
c: ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc CF
=>BD//AH
=>AH vuông góc AE
e: I là trực tâm của ΔBAD
=>DI vuông góc AB
=>DI//AC
=>góc BDI=góc ACB
DT là phân giác của góc IDB
=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB
DI//AC
=>góc IDA=góc DAC
AD là phân giác của góc HAC
=>góc DAC=1/2*góc HAC
=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ
=>góc IDT+góc IDA=1/2*90=45 độ
=>góc TDA=45 độ
=>ΔTDA vuông cân