Chứng tỏ rằng:
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<2\)
b) \(B=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{39}+\frac{1}{40}.\) Chứng tỏ \(\frac{1}{2}\)< B < 1
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}<\frac{1}{100}\)
a)đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
b,c tự làm
Thế mà ko biết làm