K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

a) Cấu hình e của R: 1s22s22p63s1

b) R thuộc chu kì 3, nhóm IA, nguyên tố s

c) Do R có 1e lớp ngoài cùng => R có tính chất của kim loại

d) Cấu hình của X: 1s22s22p5

=> X là F(Flo)

17 tháng 1 2022

Thanks bn nhiều

19 tháng 3 2022

mik cần gấp ai cứu đyy:((

 

 

 

 

 

4 tháng 4 2022

4P+5O2-to>2P2O5

0,4---0,5-----0,2

n P=0,4 mol

n O2=0,625 mol

=>O2 dư

=>m P2O5=0,2.142=28,4g

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

29 tháng 4 2022

a.\(A=\dfrac{1}{x-1}-\dfrac{x^2+x}{x^2+1}.\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)\);\(ĐK:x\ne\pm1\)

\(A=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\left(\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(A=\dfrac{1}{\left(x-1\right)}-\dfrac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(A=\dfrac{1}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(A=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}\)

\(A=\dfrac{x-1}{x^2+1}\)

b.\(A=0,2=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{x-1}{x^2+1}=\dfrac{1}{5}\)

\(\Leftrightarrow x^2+1=5x-5\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

c.\(A< 0\) mà \(x^2+1\ge1>0\)

--> A<0 khi \(x-1< 0\)

                  \(\Leftrightarrow x< 1\)

29 tháng 4 2022

a. -ĐKXĐ:\(x\ne\pm1\)

\(A=\dfrac{1}{x-1}-\dfrac{x^2+x}{x^2+1}.\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x+1\right)}{x^2+1}.\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\dfrac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\)

b. \(A=\dfrac{x-1}{x^2+1}=0,2\)

\(\Leftrightarrow\dfrac{x-1}{x^2+1}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{5\left(x-1\right)}{5\left(x^2+1\right)}=\dfrac{x^2+1}{5\left(x^2+1\right)}\)

\(\Rightarrow5x-5=x^2+1\)

\(\Leftrightarrow x^2-5x+1+5=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

c. \(A=\dfrac{x-1}{x^2+1}< 0\)

\(\Leftrightarrow x-1< 0\) (vì \(x^2+1>0\forall x\))

\(\Leftrightarrow x< 1\)

 

29 tháng 5 2023

sufficiency