Một xe máy dự định đi từ A đến B với vận tốc là 35km h. Nhưng khi đi được một nửa quãng đường Ab thì xe bị hỏng nên dừng lại sửa 15 phút, để kịp đến B đúng giờ người đó tăng vận tốc thêm 5km h trên quãng đường còn lại. Tính độ dài quãng đường AB. Ai làm hộ mih cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15 phút = 1/4 giờ
Gọi độ dài quãng đường AB là x (km, x > 0)
Thời gian đi theo dự định là: \(\frac{x}{35}\left(h\right)\)
Vận tốc nửa quãng đường sau là: 35 + 5 = 40 (km/h)
Thời gian đi theo thực tế là: \(\frac{x}{2.35}+\frac{1}{4}+\frac{x}{2.40}\) (h)
Theo bài ra ta có phương trình:
\(\frac{x}{2.35}+\frac{1}{4}+\frac{x}{2.40}=\frac{x}{35}\)
\(\Leftrightarrow\frac{x}{35}-\frac{3x}{112}=\frac{1}{4}\)
\(\Leftrightarrow\frac{x}{560}=\frac{1}{4}\)
\(\Leftrightarrow x=140\left(tmđk\right)\)
Vậy quãng đường AB dài 140km.
Đổi 15p = 0,25h
Gọi x(h) là thời gian dự định (x > 0)
Khi đó quãng đường AB dài 35x(km)
Theo đề ra ta có 35 . x/2 = (35 + 5) . (x/2 - 0,25)
35 . x/2 = 40 . (x/2 - 0,25)
<=> 17,5x = 20x - 10
<=> 20x - 17,5x = 10
<=> 2,5x = 10
<=> x = 4
<=> 35x = 140
Vậy quãng đường AB dài 140km
Gọi C là địa điểm người lái xe máy dừng lại để sửa xe :
Quãng đường AC xe máy đi với vận tốc 35km/h và đi trong 1 giờ :
⇒ S(AC) = 35.1 = (km).
Gọi quãng đường BC dài là x (km) (x>0)
Vận tốc dự tính đi trên BC là : 35km/h
=> Thời gian dự tính đi hết quãng đường BC : x/35
Thực tế do phải sửa xe nên xe máy đi hết quãng đường BC với vận tốc : 35+5=40 (km/h)
⇒ Thời gian thực tế xe máy đi quãng đường BC là: x/40 (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian xe máy phải sửa là 30 phút = 1/2 (giờ).
Do đó ta có phương trình:
x/35 - x/40 =1/2
<=> 8x/280 - 7x/280 = 140/280
<=> 8x - 7x = 140
⇔ x = 140 (thỏa mãn) nên quãng đường BC là 140 (km).
Vậy quãng đường AB là:
S(AB) = S(AC) + S(BC) = 35 + 140 = 175 (km).
Nhớ tick nhé =)))
Gọi độ dài quãng đường AB là x
Theo đề, ta có: \(\dfrac{x}{35}=\dfrac{\dfrac{x}{2}}{35}+\dfrac{1}{4}+\dfrac{\dfrac{x}{2}}{40}\)
=>1/35x-1/70x-1/80x=1/4
=>x=2240
Gọi quãng đường AB là x (km, x>0)
Xe dự định đi từ A đến B với vận tốc 35km/h
\(\to\) Thời gian dự định xe đi là \(\dfrac{x}{35}\) (h)
Vì nửa đường thứ nhất vận tốc không thay đổi nhưng phải dừng lại 15p
\(\to\) Thời gian xe đi hết nửa quãng đường thứ nhất là \(\dfrac{\dfrac{x}{2}}+\dfrac{1}{4}=\dfrac{x}{70}+\dfrac{1}{4}\) (h)
Nửa quãng đường thứ hai xe tăng vận tốc thêm 5km/h để đến B đúng như dự định
\(\to\) Thời gian đi nửa quãng đường thứ hai là \(\dfrac{\dfrac{x}{2}}{35+5}=\dfrac{x}{80}\) (h)
Vì xe đến B đúng như thời gian dự định
\(\to\) Ta có pt: \(\dfrac{x}{70}+\dfrac{1}{4}+\dfrac{x}{80}=\dfrac{x}{35}\)
\(\leftrightarrow 8x+140+7x=16x\)
\(\leftrightarrow 15x-16x=-140\)
\(\leftrightarrow -x=-140\)
\(\leftrightarrow x=140\) (TM)
Vậy quãng đường AB là 140km
15'=1/4 h ; 1h15'=5/4 h
gọi thời gian để ô tô đi từ a đến b theo dự định là x(h) với đk:x>0
trong 1 giờ đầu xe đó đi được quãng đường 35.1=35(km)
thời gian mà xe đó đi với vận tốc 40 km/h (35+5) là x-1-1/4=x-5/4 (h)
quãng đường ab mà người đó đi theo dự định là 35x (km)
-------------------------------------------- trên thực tế là 35.1+ 40(x-5/4) (km)
vì xe đó đến b đúng giờ dự định nên ta có pt:
\(35x=35+40\left(x-\dfrac{5}{4}\right)\\ \Leftrightarrow35x=35+40x-50\\ \Leftrightarrow-5x=-15\\ \Leftrightarrow x=3\)
vậy quãng đường ab dài: \(35.x=35.3=105\left(km\right)\)
-Gọi quãng đường AB là x (km) (x>0)
-Quãng đường ô tô đi được sau 1 giờ là: \(48.1=48\left(km\right)\)
Vận tốc (km/h) Quãng đường (km) Thời gian (h)
Dự định 48 \(x-48\) \(\dfrac{x-48}{48}\)
Thực tế 54 \(x-48\) \(\dfrac{x-48}{54}\)
-Quãng đường còn lại là : \(x-48\left(km\right)\)
-Vận tốc của xe máy khi đi trên quãng đường còn lại trên thực tế là:
\(48+6=54\) (km/h)
-Thời gian xe máy đi hết quãng đường còn lại dự định là: \(\dfrac{x-48}{48}\left(h\right)\)
-Thời gian xe máy đi hết quãng đường còn lại thực tế là: \(\dfrac{x-48}{54}\left(h\right)\)
-Vì sau khi đi được 1 giờ xe bị hỏng phải dừng lại sửa 15 phút nên ta có phương trình sau:
\(\dfrac{x-48}{48}-\dfrac{x-48}{54}=\dfrac{1}{4}\)
\(\Leftrightarrow\left(x-48\right)\left(\dfrac{1}{48}-\dfrac{1}{54}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow\left(x-48\right).\dfrac{1}{432}=\dfrac{1}{4}\)
\(\Leftrightarrow x-48=108\)
\(\Leftrightarrow x=156\left(km\right)\)
-Vậy quãng đường AB là 156 km.
Bài 5:
Gọi độ dài quãng đường Hà Nội – Lào Cai là x (km); x > 0.
Thời gian ô tô thứ nhất đi với vận tốc 40km/h là \(\dfrac{x}{40}\left(h\right).\)
Thời gian ô tô thứ hai đi với vận tốc 50km/h là \(\dfrac{x}{50}\left(h\right).\)
Vì ô tôt thứ nhất đến Lào Cai chậm hơn ô tô thứ hai 1 giờ 30 phút nên ta có phương trình:
\(\dfrac{x}{40}-\dfrac{1}{2}=\dfrac{x}{50}.\)
\(\Rightarrow5x-100-4x=0.\\ \Leftrightarrow x=100\left(TM\right).\)
Vậy độ dài quãng đường Hà Nội – Lào Cai là 100 km.
Gọi độ dài quãng đường AB là \(x\left(km,x>0\right)\)
Thời gian dự kiến xe máy đi từ A đến B là \(\frac{x}{35}\left(h\right)\)
Một nửa quãng đường AB là \(\frac{x}{2}\left(km\right)\)
Thời gian thực tế xe máy đi từ A đến chỗ xe bị hỏng là \(\frac{x}{2}:35=\frac{x}{70}\left(h\right)\)
Vận tốc lúc sau là \(35+5=40\left(km/h\right)\)
Thời gian thực tế xe máy đi từ chỗ xe hỏng đến B là \(\frac{x}{2}:40=\frac{x}{80}\left(h\right)\)
Vì người đó đến B đúng thời gian đã định nên ta có phương trình \(\frac{x}{70}+\frac{x}{80}+\frac{1}{4}=\frac{x}{35}\)(cả thời gian nghỉ là 15p)
\(\Leftrightarrow\frac{8x+7x+140}{560}=\frac{16x}{560}\) \(\Leftrightarrow15x+140=16x\)\(\Leftrightarrow x=140\)(nhận)
Vậy quãng đường AB dài \(140km\)
thanks nha:>