Tìm hai số tự nhiên biết tích bằng 4320 và BCNN = 360
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HP
3
PH
18 tháng 11 2015
vì 60 chia hết cho 12 nên BCNN(12;60)=12 => BC(12;60)={60;120;180;240;300;360;420;480;540;....}
NL
0
DV
0
B
0
12 tháng 11 2018
a) Giả sử A \(\le\)B
Đặt: A = 45 x A', B = 45. B' (A', B' \(\inℕ^∗\),\(ƯCLN\left(A',B'\right)=1\), A'\(\le\)B)
\(\Rightarrow\)45 x A' x 45 x B' = 24300
A' x B' = 24300 : 452 = 12
Ta có: 12 = 1 x 12 = 3 x 4
\(\Rightarrow\)Ta có các trường hợp:
- Nếu A' = 1, B' = 12 \(\Rightarrow\)A = 45; B = 360
- Nếu A' = 3, B' = 4 \(\Rightarrow\)A = 135, B = 180
Gọi 2 số cần tìm là a;b
- Ta có BCNN(a;b).ƯCLN(a;b) = ab
=> ƯCLN(a;b) = ab : BCNN(a;b) = 4320 : 360 = 12
- Gọi a = 12m
........b = 12n ( ƯCLN(m;n) = 1 )
=> ab = 12m . 12n = 4320
=> ........144mn......= 4320
=> .........mn...........= 30
Lập bảng giá trị ( nhớ loại bỏ nhưng cặp (m;n) không có ƯCLN = 1 )
Ta tìm được (m;n) = (1;30);(2;15);(3;10);(5;6);(6;5);(10;3);(15;2);(30 ;1)
Lấy m;n nhân với 12, ta tìm được (a;b) = (12;360);(24;180);(36;120);(60;72);(72;60);(120;36 );(180;24);(360;12)
gọi 2 số cần tìm là a ; b
ta có: BCNN (a,b) = ab
=> UCLN (a,b) = ab ; BCNN (a,b) = 4320 : 360 = 12
gọi a = 12m
b = 12n (ULCN (m,n) = 1
=> ab = 12m . 12n = 4320
=> 144m.n = 4320
=> mn = 30
ta tìm được (m,n) = (1;30) ; (2;15) ; (3;10) ; (5;6) ; (10;3) ; (15;2) ; (30;1)
lấy m,n nhân vs 12 ta tìm được (a;b) = (12;360) ; (14;180) ; (36;120) ; (60;72) ; (72;60) ; (120;36) ; (180;14) ; (360;12) .
t i c k nhoa!!!!!!!!!!!!!!!!!!!! ^0^