Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)Tìm điều kiện của m để (d) cắt (d') tại một điểm trên trục tung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
d) (d) vuông góc với đường thẳng y = 2x + 3 khi và chỉ khi
(1 - 4m).2 = -1 ⇔ 1 - 4m = (-1)/2 ⇔ m = 3/8
PTHĐGĐ là:
x^2+2mx+4m=0
Δ=(2m)^2-4*4m=4m^2-16m
Để (P) cắt (d)tại 2 điểm phân biệt thì 4m^2-16m>0
=>m>4 hoặc m<0
|x1|+|x2|=3
=>x1^2+x2^2+2|x1x2|=3
=>(x1+x2)^2-2x1x2+2|x1x2|=3
=>(-2m)^2-2*4m+2|4m|=3
=>4m^2-8m+8|m|=3
TH1: m>4
=>4m^2-8m+8m=3
=>4m^2=3
=>m^2=3/4
=>Loại
TH2: m<0
=>4m^2-8m-8m-3=0
=>4m^2-16m-3=0
=>\(m=\dfrac{4-\sqrt{19}}{2}\)
a. d qua gốc tọa độ khi:
\(m-2=0\Rightarrow m=2\)
b. d cắt trục tung tại điểm có tung độ là 1/3 khi:
\(m-2=\dfrac{1}{3}\Rightarrow m=\dfrac{7}{3}\)
c. d qua A khi:
\(2\left(1-4m\right)+m-2=-3\)
\(\Rightarrow m=\dfrac{3}{7}\)
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3