Cho đa thức f(x) thỏa mãn:
(x-2).f(x)=(15-x)(16+x).f(x-10)
Hỏi đa thức f(x) có ít nhất bao nhiêu nghiệm? Tìm các nghiệm đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x.f(x + 1) - ( x + 2). f( x) = 0 (1)
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0.
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1.
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).
Cách khác:
a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
b) xét x=2 ta có:(2^2-4). f(2)=(2-1).f(2+1)
0=1.f(3). suy ra f(3)=0. vậy 3 là nghiệm
xét x=1 và x=2
c) Tương tự
Thay x = 2, ta có:
\(\left(2-2\right).f\left(2\right)=0.f\left(2\right)=0=\left(15-2\right)\left(16+2\right).f\left(2-10\right)\)
\(\Rightarrow13.18.f\left(-8\right)=0\)
Mà \(13,18\ne0\)
\(\Rightarrow f\left(-8\right)=0\)
Do đó -8 là một nghiệm của f(x)
Thay x = 15, ta có:
\(\left(15-2\right).f\left(15\right)=\left(15-15\right)\left(16+15\right).f\left(15-10\right)=0.31.f\left(5\right)=0\)
\(\Rightarrow13.f\left(15\right)=0\)
Mà \(13\ne0\)
\(\Rightarrow f\left(15\right)=0\)
Do đó 15 là một nghiệm của f(x)
Thay x = -16, ta có:
\(\left(-16-2\right).f\left(-16\right)=\left(15-16\right)\left[16+\left(-16\right)\right].f\left(-16-10\right)\)
\(\left(-16-2\right).f\left(-16\right)=\left(15-16\right).0.f\left(-16-10\right)\)
\(\Rightarrow\left(-18\right).f\left(-16\right)=0\)
Mà \(-18\ne0\)
\(\Rightarrow f\left(-16\right)=0\)
Do đó -16 là một nghiệm của f(x)
Như vậy đa thức f(x) có ít nhất 3 nghiệm đó là: 2;15;-16
3 nghiệm :2 ;15;-16