Thay chữ bằng số : abc + ab = bccb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(abc+ab=bccb\)
\(\Rightarrow ax100+bx10+c+ax10+b=bx1001+cx110\)
Bớt cả 2 vế đi \(bx11+c\), ta có:
\(ax101=bx990+cx109\)
\(b\le1\) vì nếu b>1 thì \(ax101>1980\Rightarrow a>10\)(vô lý vì a là chữ số)
*TH1: b =0
\(\Rightarrow ax101=cx109\)
\(\Rightarrow\frac{a}{c}=\frac{109}{101}\) là phân số tối giản, cho nên loại
*TH2: b=1
\(\Rightarrow ax101=990+cx109\)
\(\Rightarrow ax101-909=81+cx109\)
\(\Rightarrow\left(a-9\right)x101=cx109+81>0\)
Do đó a > 9 (vô lý)
Vậy không có a,b,c thỏa mãn.
a) Số ĐBC có mấy chữ số vậy?
b) A = 9 ; B = 1 ; C = 0
c) A = 6 ; B = 9 ; C = 2 ; D = 8
d) A = 9 ; B = C = 1
abc + ab = bccb
a x 100 + bx10 + c + a x10 + b = b x 1000 + cx100+ cx10 + b
a x 110 – b x 990 = c x 109
110 x ( a – b x 9 ) = c x 109
a = 9, b = 1, c = 0. Vậy abc = 910
Abc = dad:5
Dad = abc x 5
abc là số có 3 cs x 5 dc số có 3 cs nên a = 1; 5 x c không thể tận cùng là 0 nên d = 5.
=> 515 = 1bc x 5
1bc = 103
abc + ab = bccb
a x 100 + bx10 + c + a x10 + b = b x 1000 + cx100+ cx10 + b
a x 110 – b x 990 = c x 109
110 x ( a – b x 9 ) = c x 109
a = 9, b = 1, c = 0. Vậy abc = 910
Câu a: bccb-abc=ab
abc + ab = bccb
a x 100 + bx10 + c + a x10 + b = b x 1000 + cx100+ cx10 + b
a x 110 – b x 990 = c x 109
110 x ( a – b x 9 ) = c x 109
a = 9, b = 1, c = 0. Vậy abc = 910
câu b
Abc = dad:5
Dad = abc x 5
abc là số có 3 cs x 5 dc số có 3 cs nên a = 1; 5 x c không thể tận cùng là 0 nên d = 5.
=> 515 = 1bc x 5
1bc = 103
30125/125=241 Vậy abc=125 1313+13=1326 Vậy ab=13
910+91=1001 Vậy abc=910 103=515/5 Vậy abc=103
\(_+abc\) \(_+910\)
\(ab\) \(91\)
\(\Rightarrow\)
\(bccb\) \(1001\)
\(_-abc7\) \(_-8737\)
\(7abc\) \(7873\)
\(\Rightarrow\)
\(864\) \(864\)
\(\Rightarrow\)
\(_{\times}abc\) \(_{\times}103\)
\(5\) \(5\)
\(\Rightarrow\)
\(dad\) \(515\)
abc+ ab = bccb= 910+91=1001
abc + ab = bccb
a x 100 + bx10 + c + a x10 + b = b x 1000 + cx100+ cx10 + b
a x 110 – b x 990 = c x 109
110 x ( a – b x 9 ) = c x 109
a = 9, b = 1, c = 0. Vậy abc = 910