Cho biểu thức \(b= {{a} \over b+a+c}+{{b} \over a+b+d}+{{c} \over b+c+d}+{{d} \over c+d+a}\)
tìm các số nguyên dương a,b,c,d sao cho biểu thức B có giá trị là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)
a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)
c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)
Với x=-1 (ktm đk)
Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)
d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương
Theo bài, a khác b
Nếu muốn các biểu thức nhân, cộng lớn nhất thì các số để nhân,cộng cũng phải lớn nhất
2 số lớn nhất có 1 chữ số là 9 và 8 (a khác b)
Ta có: 9 + 8 = 17 ; 9 x 8 = 72
Vậy giá trị lớn nhất của a + b là 17, của a x b là 72
a, Để A là phân số thì n + 1 khác 0
=> n khác -1
b, Để A là số nguyên thì 5 chia hết cho n + 1
=> n + 1 thuộc {1; -1; 5; -5}
=> n thuộc {0; -2; 4; -6}
Vậy...
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Các phát biểu | Đ/S |
a) Số liền trước của một số nguyên âm là một số nguyên âm; | Đ |
b) Số liền trước của một số nguyên dương là một số nguyên dương; | S |
c) Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn là số lớn hơn. | Đ |
\(b= {{a} \over b+a+c}+{{b} \over a+b+d}+{{c} \over b+c+d}+{{d} \over c+d+a}\)
Có phải \(B=\frac{a+b}{a+c}+\frac{b+a}{b+d}+\frac{c+b}{c+d}+\frac{d+c}{d+a}\)không?