K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)

hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

3 tháng 4 2020

helloo

3 tháng 4 2020

Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

Khi đó BĐT <=>

 \(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)

<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)

<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)

<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)

Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)

<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)

<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)

<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng

Khi đó (1) <=> 

\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\) 

<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)

Áp dụng buniacopxki cho vế phải ta có 

\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)

                                                                                                       \(=\sqrt{2\left(x+y+z\right)}\)

=> BĐT được CM

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Ta có:

\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

Hoàn toàn tương tự:

\(y^2+1=(y+z)(y+x); z^2+1=(z+x)(z+y)\)

Do đó:

\(\text{VT}=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=\frac{1}{(x+y)(x+z)}+\frac{1}{(y+z)(y+x)}+\frac{1}{(z+x)(z+y)}=\frac{2(x+y+z)}{(x+y)(y+z)(x+z)}(*)\)

----------------------------------------------------

\(\text{VP}=\frac{2}{3}\left(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\right)^3=\frac{2}{3}\left(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+x)(y+z)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\right)^3\)

\(=\frac{2}{3}.\frac{(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^3}{\sqrt{(x+y)(y+z)(x+z)}^3}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^2\leq (x+y+z)(xy+xz+yx+yz+zx+zy)=2(x+y+z)\)

\(\Rightarrow (x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y})^3\leq \sqrt{2(x+y+z)}^3(2)\)

\((x+y)(y+z)(x+z)=(x+y+z)(xy+yz+xz)-xyz\geq (x+y+z)(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}\) (AM-GM)

\(=\frac{8}{9}(x+y+z)(xy+yz+xz)=\frac{8}{9}(x+y+z)\)

\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}^3\geq (x+y)(y+z)(x+z)\sqrt{\frac{8}{9}(x+y+z)}(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VP}\leq \frac{2}{3}.\frac{\sqrt{2(x+y+z)}^3}{(x+y)(y+z)(x+z)\sqrt{\frac{8}{9}(x+y+z)}}=\frac{2(x+y+z)}{(x+y)(y+z)(x+z)}(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\geq \text{VP}\). Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

28 tháng 5 2019

Sao có dòng 6 từ dưới lên vậy ạ?

19 tháng 8 2020

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

23 tháng 8 2021

vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz

x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)

theo bdt cosi ta có:

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)

\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra 

\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)

ta giả sử:

\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)

suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng

hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)

em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh

23 tháng 8 2021

bạn ơi đk: 1 trong 3 số x,y,z là >=0 còn lại là >0 thì nó vẫn ra điều trên

NV
2 tháng 4 2020

Lời giải bài này khá dài, làm biếng gõ

Bạn lên google search "đề thi vào 10 chuyên khtn" nhé, đây là bài BĐT trong đề vòng 1 chuyên KHTN năm 2019

2 tháng 4 2020

Ta có:

\( 1 + {x^2} = \left( {x + y} \right)\left( {x + z} \right)\\ 1 + {y^2} = \left( {x + y} \right)\left( {y + z} \right)\\ 1 + {z^2} = \left( {x + z} \right)\left( {y + z} \right) \)

Nên: \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} = \dfrac{1}{{\left( {x + y} \right)\left( {x + z} \right)}} + \dfrac{1}{{\left( {x + y} \right)\left( {y + z} \right)}} + \dfrac{1}{{\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right)}}\)

\( \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} = \dfrac{x}{{\sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} + \dfrac{y}{{\sqrt {\left( {x + y} \right)\left( {y + z} \right)} }} + \dfrac{z}{{\left( {x + z} \right)\left( {y + z} \right)}}\\ \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{x + z}} + \dfrac{y}{{x + y}} + \dfrac{y}{{y + z}} + \dfrac{z}{{x + z}} + \dfrac{z}{{y + z}}} \right) \)

Mặt khác, áp dụng $Bunhia$ ta có:

\({\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2} \le \left( {x + y + z} \right)\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right) = M\)

Với \(M = \dfrac{{2\left( {x + y + z} \right)\left( {xy + yz + xz} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}\)

Lại có:

\( VP = \dfrac{2}{3}{\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right)^3} = \dfrac{2}{3}{\left( {\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}}} \right)^2}\\ VP \le \dfrac{{4\left( {x + y + z} \right)}}{{3\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}.\dfrac{3}{2} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \)

Vậy \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \ge \dfrac{3}{2}{\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2}\)

Dấu \("= "\) xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

14 tháng 5 2018

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng 

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

15 tháng 1 2018

Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\Rightarrow\)\(x+y+z=xyz\)

Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\)\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)

Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

         \(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)

Dấu "=" xảy ra khi A = B :

Ta được :

\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả