Cho hình vuông ABCD, M là trung điểm của AB. Qua D kẻ đường thẳng vuông góc với CM tại I, cắt BC tại N.
1)Chứng minh: tam giác CIN đồng dạng với tam giác CBM,từ đó chứng minh CI.CM = BC.CN
2)Chứng minh:\(IC^2=IN.ID\)
3) Chứng minh:tam giác ADI cân
vẽ hình cho mk ln nha mng:( mk cảm ơn ạ ai nhanh mk tick nha :3
1: Xét ΔCIN vuông tại I và ΔCBM vuông tại B có
\(\widehat{ICN}\) chung
Do đó: ΔCIN\(\sim\)ΔCBM
Suy ra: CI/CB=CN/CM
hay \(CI\cdot CM=CB\cdot CN\)
2: Xét ΔNCD vuông tại C có CI là đường cao
nên \(IC^2=IN\cdot ID\)