Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) . Biết \(f\left(x\right)=0\) với mọi giá trị của \(x\). Chứng minh \(a=b=c=d=0\)
Giúp e với ạ :<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(g(x)=10x\).
Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).
Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).
Đoạn cuối mình làm nhầm nhé.
Đáng lẽ phải cm Q(x) là đa thức dạng x + m, rồi biến đổi \(f\left(8\right)+f\left(-4\right)=80+Q\left(8\right).7.6.5+\left(-40\right)+Q\left(-4\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-40+\left(m+8\right).7.6.5-\left(m-4\right).5.6.7=12.5.6.7+40=2560\).
Mình đánh vội nên chưa suy nghĩ kĩ.
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
\(F\left(0\right)=d\Rightarrow d⋮5\)
\(F\left(1\right)=a+b+c+d⋮5\Rightarrow a+b+c⋮5\)
\(F\left(-1\right)=-a+b-c+d⋮5\Rightarrow-a+b-c⋮5\)
\(\Rightarrow\left(a+b+c\right)+\left(-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\Rightarrow b⋮5\)
\(\Rightarrow a+c⋮5\)
\(F\left(3\right)=27a+3c+\left(9b+d\right)⋮5\Rightarrow27a+3c⋮5\)
\(\Rightarrow27a+3c+2\left(a+c\right)⋮5\Rightarrow29a+5c⋮5\)
\(\Rightarrow29a⋮5\Rightarrow a⋮5\Rightarrow c⋮5\)
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)
\(f\left(x\right)=0\) có phải f(0) đâu bạn