K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2020

Ta có: P(x1 + x2) = a(x1 + x2) + b = ax1 + ax2 + b

P(x1) + P(x2) = ax1 + b + ax2 + b = ax1 + ax2 + 2b 

Để P(x1 + x2) = P(x1) + P(x2) thì ax1 + ax2 + b = ax1 + ax2 + 2b 

=> b = 2b => b - 2b = 0 =>  -b = 0 => b = 0

Vậy khi b = 0 , a \in  {\mathbb R} thì đẳng thức P(x1 + x2) = P(x1) + P(x2

22 tháng 3 2017

a,b > hoặc bằng 0 là đc

21 tháng 6 2019

CTV hay ai đó giải đi

21 tháng 6 2019

Có câu nào khó hơn không?

29 tháng 4 2019

Đáp án A

25 tháng 4 2017

Ta có :

\(P\left(x_1+x_2\right)=a.\left(x_1+x_2\right)+b\)

\(P\left(x_1\right)+P\left(x_2\right)=a.x_1+b+a.x_2+b=a\left(x_1+x_2\right)+2b\)

Theo đề bài ta có \(a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\). Lấy VP - VT, ta được b = 0

Như vậy với b = 0 và mọi số thực A thì \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\)

22 tháng 3 2022

\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)

\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)

\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)

\(\Rightarrow b=2b\)

\(\Rightarrow2b-b=0\Rightarrow b=0\)

Δ=5^2-4(m-3)

=25-4m+12=-4m+27

Để phương trình có 2 nghiệm thì -4m+27>=0

=>m<=27/4

Theo đề, ta có: x1-2<0 và x2-2>0

=>(x1-2)(x2-2)<0

=>x1x2-2(x1+x2)+4<0

=>m-3-2*(-5)+4<0

=>m+1+10<0

=>m<-11

Vì a*c=-3<0

nên phương trình luôn có 2 nghiệm pb

x1^2+x2^2=10

=>(x1+x2)^2-2x1x2=10

=>(2m+2)^2+6=10

=>(2m+2)^2=4

=>2m+2=2 hoặc 2m+2=-2

=>m=-2 hoặc m=0