tính góc xOy,yOz biết hai góc là góc kề bù va 1 phần 4 góc xOy bằng 1 phần 5 góc yoz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì xOy và yOz là hai góc kề bù
=> xOy + yOz = 180 độ
Mà yOz = 1/5 xOy
Thay vào , ta được :
xOy + 1/5 xOy = 180 độ
xOy . ( 1 + 1/5 ) = 180 độ
xOy . 6/5 = 180 độ
xOy = 180 độ : 6/5
xOy = 150
a) (Làm như toán tổng tỉ)
Ta có: \(\widehat{xOy}+\widehat{yOz}=180\)độ (kề bù)
\(\Rightarrow\widehat{xOy}=180:\left(2+1\right)\times2=120\)độ
\(\Rightarrow\widehat{yOz}=180-120=60\)độ
b) Vì \(Om\)là phân giác \(\widehat{xOy}\Rightarrow\widehat{xOm}=\widehat{yOm}=\widehat{xOy}:2=120:2=60\)độ (Thật ra chỗ này còn cách khác nhưng thôi xài cái này đi ha!)
\(On\)là phân giác \(\widehat{yOz}\Rightarrow\widehat{yOn}=\widehat{nOz}=\widehat{yOz}:2=60:2=30\)độ
Ta có: \(\widehat{mOy}+\widehat{yOn}=\widehat{mOn}\)
\(\Rightarrow60+30=90\)độ (góc vuông)
Ta có : \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
Mà \(\widehat{yOz}=2\widehat{xOy}\)
=> \(\widehat{xOy}+2\widehat{xOy}=180^0\)
=> \(3\widehat{xOy}=180^0\)
=> \(\widehat{xOy}=60^0\)
Theo đề bài có \(\widehat{yOz}=2\widehat{xOy}\Leftrightarrow\widehat{yOz}=2\cdot60^0=120^0\)
Vậy : ...
Vì \(\widehat{xOy}\)và \(\widehat{yOz}\)là 2 góc kề bù \(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^o\)
mà \(\widehat{yOz}=2.\widehat{xOy}\)
\(\Rightarrow\widehat{xOy}+2.\widehat{xOy}=180^o\)\(\Rightarrow3.\widehat{xOy}=180^o\)\(\Rightarrow\widehat{xOy}=60^o\)
\(\Rightarrow\widehat{yOz}=180^o-60^o=120^o\)
Vậy \(\widehat{xOy}=60^o\)và \(\widehat{yOz}=120^o\)
Bạn vẽ hình vào nhé
A) góc xOy kề bù yOz suy ra xOy+yOz=180 độ
mà xOy=60 độ suy ra yOz=120 độ
b) Om pg yOz mà yOz=120 độ suy ra Om =60 độ
mà xOy=60 độ suy ra Oy pg xOm
a: Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Leftrightarrow\widehat{yOz}=180^0-60^0\)
hay \(\widehat{yOz}=120^0\)
a,Ta có: xOy+yOz=180 độ
=> 120 +yOz= 180 độ
=> yOz=60 độ
b, Ot là tia phân giác yOz
=> zOt = yOz/2 = 30 độ
=> zOt = 120/4 = xOy/4