K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 1 2022

ta chứng minh \(A=n^2\)

thật vậy

với n=1 , thì \(A=1=1^2\) đúng

ta giả sử đẳng thức đúng tới k ,tức là : 

\(1+3+5+..+2k-1=k^2\)

Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)

vậy đẳng thức đúng với k+1

theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương

27 tháng 7 2018

a) Số số hàng trong tổng A là:

     \(\frac{\left(2n+1-1\right)}{2}+1=n+1\)

\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Do n là số tự nhiên nên A là số chính phương.

b) Số số hạng trong tổng B là:

    \(\frac{2n-2}{2}+1=n\)

\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)

Vậy số B không thể là số chính phương.

3 tháng 4 2023

P = 1 + 50 + 51 + 52 + 53 +.......+5100

P = 1 + 1 + ( 51 + 52 + 53+........+5100)

P = 2 + 5.( 1 + 5 + 52 +..........+599)

Vì 5.( 1 + 5 + 52+......+599) ⋮ 5 ⇒ P  : 5 dư 2

Một số chính phương chia 5 chỉ có thể dư 1 hoặc 4 mà p chia 5 dư 2 vậy p không phải là số chính phương

 

 

số các số hạng của a là:

[(2n-1)-1]:2+1=n(số)

=>A là:(2n-1+1)n:2==2n.n:2=n.n=n2

=>A là số chính phương

=>đpcm

23 tháng 7 2015

Số số hạng là :

[(2n - 1) - 1] : 2 = (2n - 2) : 2 = n - 1 (số hạng)

Tổng A là :

[(2n - 1) + 1] . (n - 1) : 2 = 2n . (n - 1) : 2 = n . (n - 1) = n2 - n

Do đó A không phải là số chính phương.

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b

29 tháng 8 2015

B=[(2n-1-1):2+1].(2n-1+1):2

  =n.2n:2

  =n2

B là 1 số chính phương

17 tháng 9 2017

a) B =\(\frac{\left\{\left(2n-1+1\right)\cdot\left[\frac{\left(2n-1-1\right)}{2}+1\right]\right\}}{2}\)

       =\(\frac{\left[2n\cdot\left(n-1+1\right)\right]}{2}=n^2\)

b) B là số chính phương.