Cho x,y > 0 thỏa mãn x + 4/y ≤ 2 tìm gtln của P = 2xy / x² + 3xy + y²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
mik chỉ giải được khi bé hơn hoặc bằng 0 thôi bạn thông cảm nha
x^2-2xy+x-2y<hoặc bằng 0
x(x+1)-2y(x+1)<hoặc bằng 0
(x+1)(x-2y)< hoăc bằng 0
mà x+1>0 do x>0
nên x-2y < hoặc bằng 0
x<hoặc bằng 2y suy ra 3x bé hơn hoặc bằng 6y
A=x^2-5y^2+3x
=x^2-4y^2-y^2+3x
=(x-2y)(x+2y)-y^2+3x < hoặc bằng (x-2y)(x+2y)-y^2+6y-9+9 =(x-2y)(x+2y)-(y-3)^2+9 bé hơn hoặc bằng 9 do cả hai cái tích và bình phương trên đều bé hơn hoặc bằng 0
suy ra GTLN của A=9 tại y=3,x=6
\(2\ge\dfrac{4}{y}+x\ge2\sqrt{\dfrac{4x}{y}}\Rightarrow\dfrac{y}{x}\ge4\)
\(\dfrac{2}{P}=\dfrac{x^2+3xy+y^2}{xy}=\dfrac{x}{y}+\dfrac{y}{x}+3=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}+3\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4+3=\dfrac{29}{4}\)
\(\Rightarrow P\le\dfrac{8}{29}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;4\right)\)