K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )

 Nên    B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)

                              =\(\frac{17^{2009}+17}{17^{2010}+17}\)

                              =\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)

                              =\(\frac{17^{2008+1}}{17^{2009}+1}\)=A

Vậy A>B

25 tháng 6 2018

Ta có : 

\(17A=\frac{17^{2009}+17}{17^{2009}+1}=\frac{17^{1009}+1+16}{17^{2009}+1}=\frac{17^{2009}+1}{17^{2009}+1}+\frac{16}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)

\(17B=\frac{17^{2010}+17}{17^{2010}+1}=\frac{17^{2010}+1+16}{17^{2010}+1}=\frac{17^{2010}+1}{17^{2010}+1}+\frac{16}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)

Vì \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\) nên \(17A>17B\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

24 tháng 3 2016

17A = \(\frac{17^{2009}+17}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)

17B = \(\frac{17^{2010}+17}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)

mà  \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\)

=> A  >  B

24 tháng 3 2016

B < 17 ^ 2009 + 1 + 16 / 17^2010 + 1+16 = 17^2009 + 17 / 17^2010 + 17 = 17(17^2008 + 1) / 17(17^2009+1) = 17^2008 + 1  / 17^2009 + 1 =A

=> B < A 

****** k mk nha!

13 tháng 3 2016

cu lay phep tinh nay tru phep tinh kia hk ra thi nt hoi mink

20 tháng 4 2016

B = 20092009 + 1 / 20092010+1 < 20092009+1+2008 / 20092010+1+2008

                                                    = 20092009+2009 / 20092010+2009

                                                    = 2009(20092008+1) / 2009(20092009+1)

                                                     = 20092008+1 / 20092009+1 = A

=> A > B nhé!

Ai k mk mk k lại !!

20 tháng 4 2016

Vậy bạn phả xét bổ đề \(\frac{a}{b}<\frac{a+n}{b+n}\)

8 tháng 5 2016

Ta có: \(B=\frac{2009^{2009}+1}{2009^{2010}+1}<\frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)

               \(=\frac{2009^{2009}+2009}{2009^{2010}+2009}\)

                \(=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)

                \(=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)

                 => B<A

Ai k mik mik k lại. Chúc các bạn thi tốt

8 tháng 5 2016

Ta có: $B=\frac{2009^{2009}+1}{2009^{2010}+1}<\frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}$B=20092009+120092010+1 <20092009+1+200820092010+1+2008 

               $=\frac{2009^{2009}+2009}{2009^{2010}+2009}$=20092009+200920092‍010+2009 

                $=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}$=2009.(20092008+1)2009.(20092009+1) 

                $=\frac{2009^{2008}+1}{2009^{2009}+1}=A$=20092008+120092009+1 =A

                 => B<A

Ai k mik mik k lại. Chúc các bạn thi tốt

11 tháng 2 2019

bài 1:

1 - 2007/2008= 1/2008

1- 2009/2010= 1/2010

1/ 2008 > 1/2010

nên 2007/ 2008 < 2009/2010

k mk nha

22 tháng 9 2019

Dễ thấy: \(2008^3+1>0\)\(2008^2-2007>0\)

Nên \(\frac{2008^3+1}{2008^2-2007}>0\Leftrightarrow A>0\)

và \(2009-2010< 0\)\(2009^3-1>0\)

\(\Rightarrow\frac{2009^3-1}{2009-2010}< 0\Leftrightarrow B< 0\)

Vậy A > B