K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

a+10b chia hết cho 17

=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)

cố định đề bài 2a+3b chia hết cho 17

nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17

hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17

vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra

ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu

chúc học tốt

7 tháng 4 2016

Vì 2a+3b chia hết cho 17=>9(2a+3b) chia hết cho17                                                                                                                                                                        => 18a+27b chia hết cho 17                                                                                                                                                                      <=>(17a+17b)+(a+10b) chia hết cho 17                                                                                                                                                         mà 17a+17b chia hết cho 17   => a+10b chia het cho 17

7 tháng 4 2016

Dễ nhưng dài. Mình ngại đánh máy lắm bạn ơi.

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

1 tháng 9 2021

,!,!a,a,a,a

13 tháng 7 2016

câu thứ 2

 a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 
10a-50b=10a+b-51b 
51b chia hết cho 17 nên 10a+b chia hết cho 17

51a : 17

=> 51a - a + 5b : 17

=> 50a + 5b : 17

=> 5 ( 10a + b ) : 17

=> 10a + b : 17

20 tháng 1 2019

a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)

=> 100a+55b chia hết cho 17

=>(83a + 38b) + 17a + 17b chia hết cho 17

Vì 17a chia hết cho 17 với mọi a thuộc N   (1)   

17b chia hết cho 17 với mọi b thuộc N            (2)           

10.(20a+11b) chia hết cho 17 (như trên)   (3)           

Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)

b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7

=> 20a + 30b + 40c chia hết cho 7

=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7

Mà 7a chia hết cho 7 với mọi a thuộc N

28b chia hết cho 7 với mọi b thuộc N

7c chia hết cho 7 với mọi c thuộc N

=> 13a + 2b -3c chia hết cho 7

Vậy...

14 tháng 8 2016

Xét hiệu : 10 x (3a + 2b) - 3 x (10a + b) = 30a +20b - 30a - 3b = 17b chia hết cho 17

Mà 3a + 2b chia hết cho 17 => 10 x (3a + 2b) chia hết cho 17  => 3 x (10a + b) cũng chia hết cho 17 

Mặt khác: 3 không chia hết cho 17 => 10a + b chia hết cho 17

Vậy khi 3a + 2b chia hết cho 17 (a , b thuộc N) thì 10a + b chia hết cho 17.

(Bạn cũng có thể xét hiệu 3a + 2b - 2(10a + b) = -17a cũng chia hết cho 17 rồi lập luận tương tự như cách mình trình bày ở trên)

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 11 2017

+Nếu 2a + 3b chia hết cho 17 => 4 .(2a+3b) chia hết cho 17

<=> 8a+12b chia hết cho 17

Xét 8a+12b+(9a+5b) = 17a+17b chia hết cho 17 

Mà 8a+12b chia hết cho 17 => 9a+ 5b chia hết cho 17

+Nếu 9a+5b chia hết cho 17 => 4.(9a+5b) chia hết cho 17

<=> 36a+20b chia hết cho 17

<=> 36a+20b-(34a+17b) chia hết cho 17 ( vì 34a+17b chia hết cho 17)

<=> 2a+3b chia hết cho 17

=> ĐPCM

25 tháng 1 2016

Sao bạn ko trả nick cho Tâm?