K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)

Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu '=' xảy ra khi ay=bx

\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)

Dấu '=' xảy ra khi a=b=1/2

Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)

18 tháng 2 2021

một cách khác :))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)

Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)

Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)

Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)

Đẳng thức xảy ra <=> a = b = 1/2

Vậy MinP = 20

15 tháng 5 2016

Toán lớp 9

21 tháng 5 2021

Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)

Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)

Lại có: \(1\le a\le2,1\le b\le2\)

\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)

\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)

Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)

Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)

\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)

17 tháng 8 2017

Ta có: \(a^2+b+\frac{3}{4}=a^2+\frac{1}{4}+b+\frac{1}{2}\ge a+b+\frac{1}{2}\)

Và \(b^2+a+\frac{3}{4}\ge a+b+\frac{1}{2}\)

\(\Rightarrow(a^2+b+\frac{3}{4})(b^2+a+\frac{3}{4})\ge(a+b+\frac{1}{2})^2\)

Cần chứng minh \((a+b+\frac{1}{2})^2\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)

\(\Leftrightarrow a^2+b^2+\frac{1}{4}+a+b+2ab\ge4ab+a+b+\frac{1}{4}\Leftrightarrow(a-b)^2\ge0\)

BDT cuối đúng hay \(VT\ge VP\)

Nên xảy ra khi \(a=b=\frac{1}{2}\)

27 tháng 4 2016

ta có: 3a+3b=5a-5b

3a+5a=3b-5b

8a=-4b

8:-4=a/b

=> a/b = -2

hên sui hà

27 tháng 4 2016

3(a+b)=5(a-b)

3a + 3b = 5a - 5b

3a + 3b + 5b = 5a

3b + 5b = 5a - 3a

8b = 2a

4b = a (1)

Từ (1) ta có:

a : b = 4

=> thương của a và b bằng 4

17 tháng 8 2016

Theo bài ra ta có:

a-b=2(a+b)

=>a-b=2a+2b

a=2a+3b

a-2a=3b

-a=3b

a=-3b

Vì a=-3b nên ta có:

a/b=-3b/b=-3

a/b=-3

=>a-b=-3

-3b-b=-3

-4b=-3

b=3/4

a=-9/4

9 tháng 6 2016

Có \(2a+2b-3\ge2\sqrt{2a.2b}-1=1\)(vì ab=1)
\(\Rightarrow F\ge a^3+b^3+\frac{7}{\left(a+b\right)^2}\)

9 tháng 6 2016

bạn giải giúp mình luôn phần sau di :((