so sánh p/s :
a) 7 phần 8 với 212 phần 243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
a)\(\frac{8}{7};\frac{7}{8}\)
Cách 1:\(\frac{8}{7}\) và \(\frac{7}{8}\) (MSC:56)
\(\frac{8}{7}=\frac{8x8}{7x8}=\frac{64}{56}\); \(\frac{7}{8}=\frac{7x7}{8x7}=\frac{49}{56}\)
Vì \(\frac{64}{56}>\frac{49}{56}\) nên \(\frac{8}{7}>\frac{7}{8}\)
Cách 2: Vì \(\frac{8}{7}>1;\frac{7}{8}< 1\) nên \(\frac{8}{7}>\frac{7}{8}\)
b)
Cách 1: \(\frac{9}{5};\frac{5}{8}\)(MSC:40)
\(\frac{9}{5}=\frac{9x8}{5x8}=\frac{72}{40};\frac{5}{8}=\frac{5x5}{8x5}=\frac{25}{40}\)
Vì \(\frac{72}{40}>\frac{25}{40}\)nên \(\frac{9}{5}>\frac{5}{8}\)
Cách 2: Vì \(\frac{9}{5}>1;\frac{5}{8}< 1\) nên \(\frac{9}{5}>\frac{5}{8}\)
HT
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{83^{13}}\)
mình chắc chắn luôn
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)
7/8 > 212/243
Ta có: \(\frac{7}{8}=\frac{1701}{1944}và\frac{212}{243}=\frac{1696}{1944}\)
Vì \(\frac{1701}{1944}>\frac{1696}{1944}nên\frac{7}{8}>\frac{212}{243}\)
Vậy \(\frac{7}{8}>\frac{212}{243}\)