1. Cho \(a,b,c\in Z\), \(a^3+b^3+c^3⋮9\). CMR abc⋮3
2. Tìm p nguyên tố để 2p+1 là lập phương 1 số tự nhiên
3. tìm p, q là các số nguyên tố phân biệt sao cho \(p+q=\left(p-q\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
Do vế phải chia hết cho 3 \(\Rightarrow\) vế trái chia hết cho 3
\(\Rightarrow a+b+c⋮3\Rightarrow\left(a+b+c\right)^3⋮27\)
\(a+b+c⋮3\Rightarrow3\left(a+b+c\right)⋮9\)
\(\Rightarrow\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)-3\left(a+b+c\right)\left(ab+bc+ca\right)⋮9\)
\(\Rightarrow3abc⋮9\Rightarrow abc⋮3\)
2.
Đặt \(2p+1=n^3\Rightarrow2p=n^3-1=\left(n-1\right)\left(n^2+n+1\right)\) (hiển nhiên n>1)
Do \(n^2+n+1=n\left(n+1\right)+1\) luôn lẻ \(\Rightarrow n-1\) chẵn \(\Rightarrow n=2k+1\)
\(\Rightarrow2p=\left(2k+1-1\right)\left(n^2+n+1\right)=2k\left(n^2+n+1\right)\)
\(\Rightarrow p=k\left(n^2+n+1\right)\Rightarrow k=1\Rightarrow n=3\)
\(\Rightarrow p=13\)
Tham khảo:
2, Với \(p=2->2p+1=5\) không là lập phương 1 số tự nhiên
\(->p=2\) loại
\(-> p>2->(p,2)=1\)
Đặt \(2p+1=(2k+1)^3, k∈ N,\)vì \(2p+1\) lẻ
\(->2p=(2k+1)^3-1\)
\(-> 2p=(2k+1-1)[(2k+1)^2+(2k+1)+1]\)
\(->2p=2k(4k^2+6k+3)\)
\(->p=k(4k^2+6k+3)\)
Vì \(p\) là số nguyên tố, \(4k^2+6k+3>k\)
\(->k=1\) và \(4k^2+6k+3\) là số nguyên tố.
\(->4k^2+6k+3=13(\) khi \(k=1)\) là số nguyên tố
\(->k=1\) (chọn)
\(-> 2p+1=27\)
\(->p=13\)
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
câu 2:
Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên
→p=2→p=2 loại
→p>2→(p,2)=1→p>2→(p,2)=1
Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ
→2p=(2k+1)3−1→2p=(2k+1)3−1
→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)
→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)
→p=k(4k2+6k+3)→p=k(4k2+6k+3)
Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k
→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố
→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố
→k=1→k=1 chọn
→2p+1=27→2p+1=27
→p=13
câu 3: p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)
tick nhaTh1: p−qp−q chia hết cho 2 suy ra p−q=2kp−q=2k
Suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy k=1k=1 vì nếu không thì qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra p−q=2p−q=2 Như vậy q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1p−q−1 chia hết cho 2 suy ra p−q−1=2tp−q−1=2t nên q=(2t+1)t(2t+2)q=(2t+1)t(2t+2)
Do vậy t=0t=0 vì nếu không thì qq thành tích 2 số nguyên lớn hơn 1.
Suy ra p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: p−q+1=2mp−q+1=2m suy ra q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu m≥2m≥2 suy ra qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra m=0,1m=0,1 thay vào đều loại.
Vậy p=5,q=3p=5,q=3
Nhìn là cũng biết e cop rùi :))
Khi cop nếu ko chú ý thì sẽ bị ra mỗi cái hai lần, mà e cũng thế.
=> Chứng tỏ cop. Quá chuẩn nhỉ?