K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔMBO và ΔMAO có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔMBO=ΔMAO

Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)

hay MA là tiếp tuyến của (O)

2: Xét tứ giác AOBM có 

\(\widehat{MAO}+\widehat{MBO}=180^0\)

nên AOBM là tứ giác nội tiếp

22 tháng 12 2020

Bạn tự vẽ hình giúp mình nha!

Ta có: OC=OB=R

Ta có: E là trung điểm BC

Suy ra: OE\(\perp\)CB

Tam giác OCB cân tại O, suy ra \(\widehat{OCB}=\widehat{OBC}\)

Ta có: \(\widehat{HCB}=\widehat{COD}\) (cùng phụ với góc \(\widehat{OCB}=\widehat{OBC}\))

Xét hai tam giác OCD và CHB, có:

\(\widehat{HCB}=\widehat{COD}\)

H và C là hai góc vuông

\(\Rightarrow\Delta OCD\sim\Delta CHB\)

\(\Rightarrow\dfrac{OC}{OD}=\dfrac{HC}{CB}\) \(\Leftrightarrow OC.OB=HC.OD\left(đccm\right)\)

22 tháng 12 2020

cảm ơn bạn nha

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)