Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M.
1/ Chứng minh MA là tiếp tuyến của đường tròn (O).
2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.
1: Xét ΔMBO và ΔMAO có
OB=OA
\(\widehat{BOM}=\widehat{AOM}\)
OM chung
Do đó: ΔMBO=ΔMAO
Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)
hay MA là tiếp tuyến của (O)
2: Xét tứ giác AOBM có
\(\widehat{MAO}+\widehat{MBO}=180^0\)
nên AOBM là tứ giác nội tiếp