Từ điểm A ở ngoài đường tròn (O ; R), kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B và vuông góc với OA tại H cắt (O) tại C. Vẽ đường kính BD của (O).
a) Chứng minh: AC là tiếp tuyến của (O).
b) Chứng minh: DC.OA = 2R2 .
c) Kẻ BK ^ AC (K Î AC), cho OA = 2R. Tính diện tích DBKC theo R.
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)
Mình cảm ơn ạ