K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

a) Xét tứ giác ANBM có:

+ D là trung điểm NM (N là điểm đối xứng với M qua D).

+ D là trung điểm AB (gt).

\(\Rightarrow\) Tứ giác ANBM là hình bình (dhnb).

a: Xét tứ giác ANBM có 

D là trung điểm của AB

D là trung điểm của NM

Do đó: ANBM là hình bình hành

mà \(\widehat{AMB}=90^0\)

nên ANBM là hình chữ nhật

Câu b đề thiếu rồi bạn

17 tháng 12 2021

a: AC=4cm

=>SABC=6cm2

21 tháng 12 2021

\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao

Vì D là trung điểm AC và MN nên AMCN là hình bình hành

Mà \(AM\bot BC\Rightarrow AM\bot MC\)

Do đó: AMCN là hình chữ nhật

\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)

Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)

Vậy ABMN là hình bình hành

\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)

Áp dụng PTG vào tam giác ABM vuông M

\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)

Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)

21 tháng 12 2021

a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.

Xét tứ giác AMCN có:

+ D là trung điểm của MN (N đối xứng với M qua D).

+ D là trung điểm của AC (gt).

\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).

Lại có:  \(\widehat{AMC}\) = 90o (cmt).

 \(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).

b) Tứ giác AMCN là hình chữ nhật (cmt).

\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).

\(\Rightarrow\) AN // BM.

Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.

\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.

Mà AN = MC (Tứ giác AMCN là hình chữ nhật).

\(\Rightarrow\) BM = MC = AN.

Xét tứ giác ABMN có:

+ BM = AN (cmt).

+ BM // AN (cmt).

\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).

c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).

Xét tam giác AMB vuông tại M có:

AB2 = AM2 + BM2 (Định lý Pytago).

Thay số: 52 = AM2 + 32.

\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).

Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).

a)

Ta có: M và E đối xứng với nhau qua D(gt)

nên D là trung điểm của ME

Xét ΔABC có 

M là trung điểm của BC(AM là đường trung tuyến ứng với cạnh BC trong ΔABC)

D là trung điểm của AB(gt)

Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

hay MD//AC và \(MD=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E\(\in\)MD và \(MD=\dfrac{ME}{2}\)(D là trung điểm của ME)

nên ME//AC và ME=AC

Xét tứ giác AEMC có 

ME//AC(cmt)

ME=AC(cmt)

Do đó: AEMC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác ABFC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AF(A và F đối xứng nhau qua M)

Do đó: ABFC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABFC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABFC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)