Tìm x, biết
1/3+1/6+1/10+...+2/x(x+1)=2005/2007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\frac{1}{x+1}=\frac{1}{2}-\left(\frac{2005}{2007}:2\right)\)
\(\frac{1}{x+1}=\frac{1}{2007}\)
=>x+1=2007
x=2007-1
x=2006
Vậy x=2006
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2005}{2007}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2005}{2007}\)
\(\Rightarrow\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2005}{2007}\)
\(\Rightarrow\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{x}-\frac{2}{x+1}=\frac{2005}{2007}\)
\(\Rightarrow\frac{2}{2}-\frac{2}{x+1}=\frac{2005}{2007}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2005}{2007}\)
\(\Rightarrow\frac{2}{x+1}=1-\frac{2005}{2007}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2007}\)
\(\Rightarrow x+1=2007\)
\(\Rightarrow x=2006\)
\(\frac{1}{2}\cdot\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}\cdot\frac{2005}{2007}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2005}{4014}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2005}{4014}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2005}{4014}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2005}{4014}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2007}\)
\(\Rightarrow x+1=2007\)
\(x=2007-1\)
\(x=2006\)
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2005/2007
=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2005/2007
=> 2(1/2*3 + 1/3*4 + 1/4*5 + ... + 1/x*(x+1) = 2005/2007
=> 2(1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1) = 2005/2007
=> 2(1/2 - 1/x + 1) = 2005/2007
=> 1/2 - 1/x + 1 = 2005/4014
=> 1/x+1 = 1/2007
=> x + 1 = 2007
=> x = 2006
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2005}{2007}\)
\(\rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2005}{2007}:2\)
\(\rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2005}{2007}:2\) \(\Rightarrow\frac{1}{x+1}=\frac{1}{2007}\)
\(\Rightarrow x+1=2007\rightarrow x=2006\)
Vậy x = 2006.
1. x(x + 1) - x2 + 1 = 0
<=> x(x + 1) - (x2 - 1) = 0
<=> x(x + 1) - (x + 1)(x - 1) = 0
<=> (x - x + 1)(x + 1) = 0
<=> x + 1 = 0\
<=> x = -1
2. 4x(x - 2) - 6 + 3x = 0
<=> 4x(x - 2) - (3x - 6) = 0
<=> 4x(x - 2) - 3(x - 2) = 0
<=> (4x - 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}4x-3=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
3. x(x + 2) - 3(x + 2) = 0
<=> (x - 3)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
1.chứng minh rằng : 1^3+2^3+3^3+...+n^3 chia hết 1+2+3+...+n
2.tìm x , 1/3+1/6+...+2/x(x+1)=2005/2007
Cái bài 2 nhân với 1 là 2/2 nên nhân cả tử cả mẫu với 2 ra 6=2*3
12=3*4
.........
Còn lại tự tính
Nếu ra kết quả đúng thì cho **** nhé
a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8-12+20x=0\)
\(\Leftrightarrow21x-4=0\)
\(\Leftrightarrow21x=4\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)
Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!
Ta có :\(\frac{1}{3}+\frac{1}{6}+..+\frac{2}{x\left(x+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}\)
= 2 x \(\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...\frac{1}{x\left(x+1\right)}\right)=2\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)\)
= 2 x (\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
= 2 x (\(\frac{1}{2}-\frac{1}{x+1}\)
Khi đó chỉ cần giải 2 x\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)