Chứng minh rằng nếu x,y là số nguyên thì 2x+3y chia hết cho 17 và 9x +5y chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
Ta phải chứng minh, 2 . x + 3 . y chia hết cho 17, thfi 9 . x + 5 . y chai hết cho 17
Ta có: 4( 2x + 3y ) + ( 9x + 5y ) = 17x + 17y chia hết cho 17
Do vậy; 2x + 3y chia hết cho 17, 4( 2x + 3y ) chia hết cho 17; 9x + 5y chia hết cho 17
Ngược lại; ta có: 4( 2x + 3y ) chia hết cho 17 mà ( 4;17 ) = 1
\(\Rightarrow\)2x + 3y chia hết cho 17
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
abc = a.100+b.10+c
Theo tính chất chia hết của phép cộng ta có :
a.100 chia hết 4
b.10 chia hết 4
c chia hết 4 (đpcm)
b) 9x + 5y
=2x +3y+7x +2y
=2(2x+3y)+5x -1y
=3(2x+3y)+3x-4y
=4(2x+3y) +1x-7y
.........................
=13(2x +3y)-17x-34y
Vì 17 chia hết17
34 chia hết 17
=>13(3x+2y)-17x-34y hay 2x +3y chia hết cho 4
Ta có:
3.(9x+5y) - 5(2x+3y) chia hết cho 17
=> 27x + 15y - 10x - 15y chia hết cho 17
=> 27x-10x chia hết cho 17
=> 13x chia hết cho 17 ( sai đè chỗ này nha bạn đ/a đúng phải là : 17x chia hết cho 17)
Vì 2x+3y chia hết cho 17 => 5(2x+3y) chia hết cho 17
=> 3(9x+5y) chia hết cho 17 => 9x+5y chia hết cho 7 ( vì 3 ko chia hết cho 17)
Vậy 9x+5y chia hết cho 17 (đpcm)
k nha bạn !