Tìm x : I x -3 I - 15= -11
I x+2 I - 35 = -20
Giup e voi a ~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung điều kiện $x,y$ nguyên.
Lời giải:
$3x+4y+5xy=20$
$\Leftrightarrow 15x+20y+25xy=100$
$\Leftrightarrow 5x(3+5y)+4(3+5y)=112$
$\Leftrightarrow (3+5y)(5x+4)=112$
Với $3+5y, 5x+4$ nguyên thì là bài toán phương trình tích cơ bản. Bạn có thể dễ dàng xét các TH để tìm $x,y$
Bài 1.
a, (x-2)-15=65
x-2=65+15
x-2=80
x=80+2
x=2
b, 115-2\(\times\)(x-3)=35
2\(\times\)(x-3)=115-35
2\(\times\)(x-3)=70
x-3=70:2
x-3=35
x=35+5
x=38
c, 35+2\(\times\)(x-3)=65
2\(\times\)(x-3)=65-35
2\(\times\)(x-3)=30
x-3=30:2
x-3=15
x=15+3
x=18
3\(\times\)(x-5)-16=11
3\(\times\)(x-5)=11+16
3\(\times\)(x-5)=27
x-5=27:3
x-5=9
x=9+5
x=14
Bài 2:
a, \(2^x-1=31\)
\(2^x=31-1\)
\(2^x=30\)
\(\Rightarrow\)Không có x thoả mãn điều kiện \(2^x=30\)
b, \(x^3-1=26\)
\(x^3=26+1\)
\(x^3=27\)
\(\Rightarrow x=3\) vì \(3^3=27\)
c, \(6^x-1+1=37\)
\(6^x-1=37-1\)
\(6^x-1=36\)
\(6^x=36+1\)
\(6^x=37\)
\(\Rightarrow\) Không có x thoả mãn điều kiện \(6^x=37\)
d, (x+2)\(^3\)-15\(^0\)=215
\(\left(x+2\right)^3-1=215\)
\(\left(x+2\right)^3=215+1\)
\(\left(x+2\right)^3=216\)
\(\left(x+2\right)^3=6^3\)
\(x+2=6\)
\(x=6-2\)
\(x=4\)
e, \(2\times\left(x-9\right)^2=2\)
\(\left(x-9\right)^2=2:2\)
\(\left(x-9\right)^2=1\)
\(\Rightarrow x-9=1\) vì \(1^2=1\)
x=1+9
x=10
g, \(3\times\left(x-5\right)^3=51\)
\(\left(x-5\right)^3=51:3\)
\(\left(x-5\right)^3=17\)
\(\Rightarrow\) Không có x thoả mãn điều kiện \(\left(x-5\right)^3=17\)
Nếu đúng thì tick cho mk nhé
Bài 1:
a)\(\left(x-2\right)-15=65\)
\(x-2=65+15\)
\(x-2=80\)
\(x=80+2\)
\(x=82\)
b)\(115-2\left(x-3\right)=35\)
\(2\left(x-3\right)=115-35\)
\(2\left(x-3\right)=80\)
\(x-3=80:2\)
\(x-3=40\)
\(x=40+3\)
c) \(35+2\left(x-3\right)=65\)
\(2\left(x-3\right)=65-35=30\)
\(x-3=30:2=15\)
\(x=15+3=18\)
d) \(3\left(x-5\right)-16=11\)
\(3\left(x-5\right)=11+16=27\)
\(x-5=27:3=9\)
\(x=9+5=14\)
Bài 2:
a) \(2^x-1=31\)
\(2^x=31+1=32\)
Vì \(2^5=32\Rightarrow x=5\)
b) \(x^3-1=26\)
\(x^3=26+1=27\)
Vì \(3^3=27\Rightarrow x=3\)
c)\(6^{x-1}+1=37\)
\(6^{x-1}=37-1=36\)
Vì \(6^6=36\Rightarrow x-1=6\Rightarrow x=6+1=7\)
d)\(\left(x+2\right)^3-15^0=215\)
\(\left(x+2\right)^3-1=215\)
\(\left(x+2\right)^3=215+1=216\)
Vì \(6^3=216\Rightarrow x+2=6\Rightarrow x=6-2=4\)
e)\(2\left(x-9\right)^2=2\)
\(\left(x-9\right)^2=2:2=1\)
Vì \(1^2=1\Rightarrow x-9=1\Rightarrow x=1+9=10\)
g) \(3\left(x-5\right)^3=51\)
\(\left(x-5\right)^3=51:3=17\)
a) Ta có: x-43=(35-x)-48
⇔x-43=35-x-48
⇔x-43=-x-13
⇔x-43+x+13=0
⇔2x-30=0
⇔2(x-15)=0
mà 2≠0
nên x-15=0
hay x=15
b) Ta có: 305-x+14=48+(x-23)
⇔319-x=48+x-23
⇔319-x=x+25
⇔319-x-x-25=0
⇔-2x+294=0
⇔-2x=-294
hay x=147
Vậy: x=147
c) Ta có: -(x-6+85)=(x+51)-54
⇔-x+6-85=x+51-54
⇔-x-79=x-3
⇔-x-79-x+3=0
⇔-2x-76=0
⇔-2x=76
hay x=-38
Vậy: x=-38
d) Ta có: -(35-x)-(37-x)=33-x
⇔-35+x-37+x-33+x=0
⇔3x-105=0
⇔3(x-35)=0
mà 3≠0
nên x-35=0
hay x=35
Vậy: x=35
e) Ta có: 13-|x|=|-4|
⇔13-|x|=4
⇔|x|=9
⇔x∈{9;-9}
Vậy: x∈{9;-9}
f) Ta có: |x|-3+6=16
⇔|x|+3=16
⇔|x|=13
hay x∈{-13;13}
Vậy: x∈{-13;13}
g) Ta có: 35-|2x-1|=14
⇔|2x-1|=21
⇔\(\left[{}\begin{matrix}2x-1=21\\2x-1=-21\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=22\\2x=-20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-10\end{matrix}\right.\)
Vậy: x∈{11;-10}
h) Ta có: |3x-2|+5=9-x
⇔|3x-2|+5-9+x=0
⇔|3x-2|-4+x=0
⇔|3x-2|=0-(-4+x)
⇔|3x-2|=4-x
⇔\(\left[{}\begin{matrix}3x-2=4-x\\3x-2=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-2-4+x=0\\3x-2-x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\2x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy: x=-1
a) \(5x-65=5.3^2 \\ 5x-65=45\\5x=45+65\\5x=110\\x=22\)
b) \(200-(2x+6)=4^3\\2x+6=200-4^3\\2x+6=136\\2x=130\\x=65\)
c) \(2(x-51)=2.2^3+20\\2(x-51)=16+20\\2(x-51)=36\\x-51=18\\x=51+18=69\)
d) \(135-5(x+4)=35\\5(x+4)=135-45\\5(x-4)=90\\x-4=18\\x=18+4=22\)
e) \((2x-4)(15-3x)=0\\2(x-2).3(5-x)=0\\(x-2)(5-x)=0\\ \left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right. \\ \left[ \begin{array}{l}x=2\\x=5\end{array} \right.\)
f) \(2^{x+1} . 2^{2014}=2^{2016} \\ (2^{x+1} . 2^{2014}):2^{2014}=2^{2016} :2^{2014} \\ 2^{x=1}=2^{2016-2014} \\2^{x+1}=2^2\\x+1=2\\x=1\)
g) \(15+(x-1)^3=43\\(x-1)^3=15-42\\(x-1)^3=-27\\(x-1)^3=(-3)^3\\x-1=-3\\x=-2\)
h) \(15-x=17+(-9)\\15-x=17-9\\15-x=8\\x=15-8\\x=7\)
i) \(|x-5|=|-7|+|-4|\\|x-5|=7+4\\|x-5|=11\\ \left[ \begin{array}{l}x-5=11\\x-5=-11\end{array} \right. \\ \left[ \begin{array}{l}x=16\\x=-6\end{array} \right.\)
k) \(|x-3|-12=-9+|-7|\\|x-3|-12=-9+7\\|x-3|-12=-2\\|x-3|=10 \\ \left[ \begin{array}{l}x-3=10\\x-3=-10\end{array} \right. \\ \left[ \begin{array}{l}x=13\\x=-7\end{array} \right.\)
Bài 1:
a) 15-x=7-(-2)
15-x=9
x=15-9
x=6
b) x-35=(-12)-3
x-35=-15
x=-15+35
x=20
c) \(\left|x+2\right|=0\)
=> x+2=0
=> x=0-2
x=-2
d) \(\left|x-5\right|=7\)
\(\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
Bài 2
a) Tổng ba số là:
15+(-30)+x=-15+x
b) -15+x=45
x=45-(-15)
x=60
c)-15+x=-45
x=-45-(-15)
x=-30
cho mình nhé
1.
-16+23+x=-16
<=>7+x=-16
<=>x=-16-7
<=>x=-23
Vậy...
2.
2x – 35 = 15
<=>2x=50
<=>x=25
Vậy...
3.
3x + 17 = 12
<=>3x=-5
<=>x=-5/3
Vậy...
4.
│x - 1│= 0
<=>x-1=0
<=>x=1
Vậy..
5.
-13 .│x│ = -26
<=>IxI=2
<=>x=-2 và x=2
Vậy..
a) x - 43 = ( 35 - x ) - 48
⇔ x - 43 = 35 - x - 48
⇔ 2x = 30
⇔ x = 15
Vậy...
b) 305 - x + 14 = 48 + ( x - 23 )
⇔ 305 - x + 14 = 48 + x - 23
⇔ 2x = 294
⇔ x = 147
Vậy...
c) -( x - 6 + 85 ) = ( x + 51 ) - 54
⇔ - x + 6 - 85 = x + 51 - 54
⇔ 2x = -76
⇔ x = -38
Vậy...
d) -( 35 - x ) - ( 37 - x ) = 33 - x
⇔ -35 + x - 37 + x = 33 - x
⇔ 2x = 105
⇔ x = 52,5
Vậy...
e) 13 - | x | = | -4 |
⇔ |x| = 9
⇔ x = \(\pm\)9
Vậy...
f) | x | - 3 + 6 = 16
⇔ |x| = 13
⇔ x = \(\pm\)13
Vậy...
g) 35 - | 2x - 1 | = 14
⇔ |2x - 1| = 21
⇔ \(\text{⇔}\left[{}\begin{matrix}2x-1=21\\2x-1=-21\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=11\\x=-10\end{matrix}\right.\)
Vậy...
h) | 3x - 2 | + 5 = 9 - x
⇔ |3x - 2| + x = 4
⇔ Tịt
Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`
`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`
`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`
\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)
\(B\ge\left|3\right|+\left|1\right|=4\)
\(\Rightarrow A\ge4+15=19\)
hay MinA = 19
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)
Vậy MinA = 19 tại \(2\le x\le3\).
a: =>|x-3|=4
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
b: =>|x+2|=15
\(\Leftrightarrow\left[{}\begin{matrix}x+2=15\\x+2=-15\end{matrix}\right.\Leftrightarrow x\in\left\{13;-17\right\}\)