Tìm tất cả các cặp số nguyên xx và yy thỏa mãn (x+1).(y+6) = -3(x+1).(y+6)=−3 và x < yx<y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2+5y^2=6\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\pm1\\y=\pm1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0;y=\pm1\\x=2;y=\pm1\end{cases}}\)
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
|x - 6| + |y - 1| = 4 => |x - 6| = 4 - |y - 1|
Vì |x - 6| \(\ge\) 0 => 4 - |y - 1| \(\ge\) 0 => |y - 1| \(\le\) 4 Mà |y - 1| \(\ge\) 0 và y nguyên nên |y - 1| = 0; 1; 2; 4
+) |y - 1| = 0 => y - 1 = 0 và |x - 6| = 4
y - 1 = 0 => y = 1 => x = y + 3 = 4 .
Khi đó |x - 6| = |4 - 6| = 2 \(\ne\) 4 => Loại
+) |y - 1| = 1 => |x - 6| = 3 và y - 1= 1 hoặc y - 1 = -1
y - 1 = 1 => y = 2 => x = y + 3 = 5 => |x - 6| = 1 \(\ne\) 3 => Loại
y - 1 = -1 => y = 0 => x = 3 => |x - 6| = 3 thỏa mãn
+) |y - 1| = 2 => |x - 6| = 2 và y - 1 = 2 hoặc y - 1 = -2
y - 1 = 2 => y = 3 => x = 6 => |x - 6| = 0 \(\ne\) 2 (Loại)
y - 1 = - 2 => y = -1 => x = 2 => |x - 6| = 4 \(\ne\) 2 (Loại)
+) |y - 1| = 3 => |x - 6| = 1 và y - 1 = 3 hoặc y - 1 = -3
y - 1 = 3 => y = 4 => x = 7 => |x - 6| = 1 (Thỏa mãn)
y - 1 = -3 => y = -2 => x = 1 => |x - 6| = 5 \(\ne\) 1 (Loại)
+) |y - 1| = 4 => |x - 6| = 0 => x - 6 = 0 => x = 6 => y = 6 - 3 = 3
=> |y - 1| = 2 \(\ne\) 4 (Loại)
Vậy có các cặp (x; y) = (3;0) ; (7; 4)
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Sửa đề: x( 2y + 3) = y+1
Do \(x\left(2y+3\right)=y+1\)
\(\Rightarrow y+1⋮2y+3\)
\(\Rightarrow2y+2⋮2y+3\)
\(\Rightarrow2y+3-1⋮2y+3\)
Vì \(2y+3⋮2y+3\)
\(\Rightarrow-1⋮2y+3\Rightarrow2y+3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
nếu \(2y+3=-1\Rightarrow2y=-4\Rightarrow y=-2\)
\(\Rightarrow x.\left[2.\left(-2\right)+3\right]=-2+1\)
\(\Rightarrow-x=-1\Rightarrow x=1\)
nếu \(2y+3=1\Rightarrow2y=-2\Rightarrow y=-1\)
\(\Rightarrow x\left[2.\left(-1\right)+3\right]=-1+1\)
\(\Rightarrow x=0\)
Vậy \(x=1;y=-2\)hoặc \(x=0;y=-1\)
hok tốt!!