Chứng minh rằng: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}<\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}=A\)
Ta có : \(A=\frac{1}{5}+\left(\frac{1}{14}+\frac{1}{28}+\frac{1}{44}\right)+\left(\frac{1}{61}+\frac{1}{85}+\frac{1}{97}\right)\)
\(A< \frac{1}{5}\left(\frac{1}{14.3}\right)+\left(\frac{1}{61.3}\right)\)
\(A< \frac{1}{5}+\frac{3}{14}+\frac{3}{61}\)
\(A< \frac{1}{5}+\frac{3}{12}+\frac{1}{20}\)
\(A< \frac{1}{2}\left(ĐPCM\right).\)
Ta có: \(\frac{1}{5}\)>\(\frac{1}{14}\)
\(\frac{1}{14}\)=\(\frac{1}{14}\)
\(\frac{1}{28}\)<\(\frac{1}{14}\)
...
\(\frac{1}{97}< \frac{1}{14}\)
=>Cả dãy số < \(\frac{1}{14}.7\)<\(\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}=0,36833......\)
mà \(\frac{1}{2}=0,5\)
\(0,36833..< 0,5\)
Vậy \(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{2}\)
Đặt \(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}=A\)
Ta có : \(A=\frac{1}{5}+\left(\frac{1}{14}+\frac{1}{28}+\frac{1}{44}\right)+\left(\frac{1}{61}+\frac{1}{85}+\frac{1}{97}\right)\)
\(A< \frac{1}{5}\left(\frac{1}{14.3}\right)+\left(\frac{1}{61.3}\right)\)
\(A< \frac{1}{5}+\frac{3}{14}+\frac{3}{61}\)
\(A< \frac{1}{5}+\frac{3}{12}+\frac{1}{20}\)
\(A< \frac{1}{2}\left(ĐPM\right)\).
Ta có: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}.\)
\(=\frac{1}{5}+\left(\frac{1}{14}+\frac{1}{31}+\frac{1}{44}\right)+\left(\frac{1}{61}+\frac{1}{84}+\frac{1}{96}\right)\)
Ta thấy \(\frac{1}{14}< \frac{1}{12}\)
\(\frac{1}{31}< \frac{1}{12}\)
\(\frac{1}{44}< \frac{1}{12}\)
\(=>\frac{1}{14}+\frac{1}{31}+\frac{1}{44}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}\)
\(=>\frac{1}{14}+\frac{1}{31}+\frac{1}{44}< \frac{1}{12}.3\left(1\right)\)
Ta lại thấy \(\frac{1}{61}< \frac{1}{60}\)
\(\frac{1}{84}< \frac{1}{60}\)
\(\frac{1}{96}< \frac{1}{60}\)
\(=>\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}\)
\(=>\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{60}.3\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
\(=>\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{5}+3.\left(\frac{1}{12}+\frac{1}{60}\right)\)
\(=>\frac{1}{5}+\frac{1}{14}+\frac{1}{31}+\frac{1}{44}+\frac{1}{61}+\frac{1}{84}+\frac{1}{96}< \frac{1}{2}\)
\(=>Đpcm\)
Ta có : \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
Ta có:
\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Bài toán phụ 1:
Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12x3=1/4 (1)
Bài toán phụ 2:
Ta có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60x3=1/20 (2)
Từ (1) và (2), ta có:
1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20
1/5+1/13+1/14+1/15+1/61+1/62+1/63<4/20+5/20+1/20
1/5+1/13+1/14+1/15+1/61+1/62+1/63<9/20<1/2
=>1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2