b) Hệ phương trình mx + y = 3, 4x + my = 6 có nghiệm thỏa mãn điều kiện x > 1 y > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\)
TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0
TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)
\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )
TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\)
Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\)
\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\)
Gộp cả 2 điều kiện x và y ta được m=-1 và m=0
Nãy giờ gõ nó cứ bị lỗi :D
a: Vì m/1<>-m/1
neen hệ luôn có nghiệm
b: mx-y=2 và x+my=3
=>y=mx-2 và x+m(mx-2)=3
=>y=mx-2 và x(1+m^2)=5
=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1
x>0; y>0
=>5>0 và -2m^2+5m-2>0
=>2m^2-5m+2<0
=>2m^2-4m-m+2<0
=>(m-2)(2m-1)<0
=>1/2<m<2
b) pt1 <=> y = mx - 2
Thay y vào pt2 rút x ra ngoài,biến đổi, đc : x = (3 + 2m)/(1 + m²)
Thế vào pt1 đc : y = (3m + 2m²)/(1 + m²) - 2
x + 2y = 0 <=> (3 + 2m) + (6m + 4m²) = 4(1 + m²) <=> m = 1/8
Ta có: D = m − 1 3 m = m 2 + 3 ; D x = 2 − 1 5 m = 2 m + 5 ; D y = m 2 3 5 = 5 m − 6
Vì m 2 + 3 ≠ 0 , ∀ m nên hệ phương trình luôn có nghiệm duy nhất x = D x D = 2 m + 5 m 2 + 3 y = D y D = 5 m − 6 m 2 + 3
Theo giả thiết, ta có:
x + y < 1 ⇔ 2 m + 5 m 2 + 3 + 5 m − 6 m 2 + 3 < 1 ⇔ 7 m − 1 m 2 + 3 < 1
⇔ 7 m − 1 < m 2 + 3 ⇔ m 2 − 7 m + 4 > 0 ⇔ m > 7 + 33 2 m < 7 − 33 2
Đáp án cần chọn là: A
\(\hept{\begin{cases}x+my=1\left(1\right)\\mx+y=1\left(2\right)\end{cases}}\Leftrightarrow x\left(m+1\right)+y\left(m+1\right)=2\) (cộng theo vế (1) và (2) ; tách nhân tử chung)
\(\Leftrightarrow\left(x+y\right)\left(m+1\right)=2\) (3)
Để hệ có nghiệm duy nhất thì x = y = t
Thay vào (3) \(2a\left(m+1\right)=2\Leftrightarrow a\left(m+1\right)=1\)
Mà x,y > 0 nên a = x + y > 0
Suy ra \(\hept{\begin{cases}a>0\\m+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y>0\\m>-1\end{cases}}\)
Vậy với m > -1 thì phương trình có nghiệm duy nhất: x,y > 0 (không chắc)
Xét hệ
m x + y = 3 4 x + m y = 6 ⇔ y = 3 − m x 4 x + m 3 − m x = 6 ⇔ y = 3 − m x 4 x + 3 m − m 2 x = 6 ⇔ y = 3 − m x 4 − m 2 x = 6 − 3 m ⇔ y = 3 − m x 1 m 2 − 4 x = 3 m − 2 2
Hệ phương trình đã cho có nghiệm duy nhất ⇔ (2) có nghiệm duy nhất
m 2 – 4 ≠ 0 ⇔ m ≠ ± 2 ( * )
Khi đó hệ đã cho có nghiệm duy nhất
⇔ x = 3 m + 2 y = 3 − 3 m m + 2 ⇔ x = 3 m + 2 y = 6 m + 2
Ta có
x > 0 y > 2 ⇔ 3 m + 2 > 0 6 m + 2 > 1 ⇔ m + 2 > 0 4 − m m + 2 > 0 ⇔ m > − 2 4 − m > 0 ⇔ m > − 2 m < 4 ⇔ − 2 < m < 4
Kết hợp với (*) ta được giá trị m cần tìm là – 2 < m < 4; m ≠ 2
Đáp án: A