Tìm các số tự nhiên x,y thỏa mãn : \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x-y}{7-13}=\frac{42}{-6}=-7\)
Do đó:
\(\hept{\begin{cases}\frac{x}{7}=-y\\\frac{y}{13}=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-49\\y=-91\end{cases}}\)
Vậy x = -49; y = -91
Đặt \(\frac{x}{7}=\frac{y}{13}=k\)
=> x = 7k,y = 13k
=> x - y = 7k - 13k
=> x - y = -6k
=> 42 = -6k
=> k = -7
Vậy x = 7.(-7) = -49 , y = 13.(-7) = -91
\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)
Mà \(\alpha=x+y+z\) (theo gt) nên ta có thể viết \(Q\) như sau:
\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)
Đặt \(a=\frac{y+z}{x};\) \(b=\frac{x+z}{y};\) và \(c=\frac{x+y}{z}\) \(\Rightarrow\) \(a,b,c>0\)
Khi đó, biểu thức \(Q\) được biểu diễn theo ba biến \(a,b,c\) như sau:
\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)
\(\Rightarrow\) \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)
Mặt khác, ta lại có:
\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
nên \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\) (theo bđt \(Cauchy\) lần lượt cho hai bộ số gồm các số không âm)
Nhân hai bđt \(\left(1\right);\) và \(\left(2\right)\) vế theo vế, ta được bđt mới là:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Theo đó, \(a+b+c+3\ge9\) tức là \(a+b+c\ge6\)
\(\Rightarrow\) \(4\left(a+b+c\right)\ge24\) \(\left(\alpha\right)\)
Bên cạnh đó, ta cũng sẽ chứng minh \(abc\ge8\) \(\left(\beta\right)\)
Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.
\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)
Vậy, bđt \(\left(\beta\right)\) được chứng minh.
Từ đó, ta có thể rút ra được một bđt mới.
\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)
\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\) \(\left(\gamma\right)\)
Cộng từng vế 3 bđt \(\left(\alpha\right);\) \(\left(\beta\right)\) và \(\left(\gamma\right)\), ta được:
\(Q-8\ge24+8+24=56\)
Do đó, \(Q\ge64\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) \(x=y=z=2\)
Vậy, \(Q_{min}=64\) khi \(\alpha=6\)
Nguyên Đinh Huynhkhông biết thì thôi đừng có trả lời mất công bạn vovanninh phải đọc
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}+\frac{1}{xy}\Leftrightarrow\frac{x+y}{xy}=\frac{xy+3}{3xy}\Leftrightarrow\frac{3x+3y}{3xy}=\frac{xy+3}{3xy}\Leftrightarrow3x+3y=xy+3\Leftrightarrow\left(x-3\right)\left(y-3\right)=6\)
Vì x,y là số tự nhiên nên x - 3 và y - 3 thuộc ước của -6 mà ước của -6 là +-1; +-2; +-3; +-6
Ta có bảng:
x-3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y-3 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -3 (loại) | 0 (loại) | 1 | 2 | 4 | 5 | 6 | 9 |
y | 2 | 1 | 0 (loại) | -3 (loại) | 9 | 6 | 5 | 4 |
Vậy có 4 cặp là ......
Do 10 = 1.10 =10.1 = 2.5 = 5.2
Mà 2x + 1 lẻ nên 2x + 1 = 1 hoặc 2x + 1 = 5
=> x = 0 hoặc 2 nhưng x = 0 thì x.y = 0 nên ta chọn x = 2 khi đó y - 3 = 2
=> y = 5
Vậy khi đó x.y lớn nhất là : x.y = 2.5 = 10
2x+1 là số lẻ
=> (2x+1)(y-3) = 1.10 = 5.2
+ 2x+1 =1 => x =0 và y -3 =10 => y =13
+ 2x +1 = 5 => x =2 và y-3 =2 => y =5
Tích xy lớn nhất = 2.5 khi x =2 và y =5
Ta có: \(\frac{1}{x}-\frac{y}{8}=\frac{1}{16}\)
=> \(\frac{1}{x}=\frac{1}{16}+\frac{y}{8}\)
=> \(\frac{1}{x}=\frac{1+2y}{16}\)
=> 1.16 = x(1 + 2y)
=> x(1 + 2y) = 16 = 1 . 16 = 2 . 8 = 4.4
Vì 1 + 2y là số lẽ nên 1 + 2y \(\in\){1; -1} => x \(\in\){16; -16}
Lập bảng :
1 + 2y | 1 | -1 |
x | 16 | -16 |
y | 0 | -1 |
Vậy ...
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927