1. Tìm số a biết :
a) 2a+5 chia hết cho a+1
b) 264 chia cho a dư 24 còn 363 chia cho a dư 43.
2. Cho p và p+4 là các số nguyên tố (p>3). Chứng minh rằng p+8 là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do
Ta có : 264 chia cho a dư 24 => 264 - 24 chia hết cho a
=> 240 chia hết cho a
=> a ∈ Ư(240)
363 chia cho a dư 43 => 363 - 43 chia hết cho a
=> 320 chia hết cho a
=> a ∈ Ư(320)
Nên a ∈ ƯC (240; 320) = 80 => a ∈ ƯC (240; 320) = Ư(80) = {1;2;4;5;8;10;16;20;40;80}
Vì số dư < số chia nên 43 < a => a = 80
Vậy số cần tìm là 80
a, Vì 2a+5*a+1
Vì a+1*a+1 => 2(a+1)*a+1 => 2a+1*a+1
=> 2a+5-(2a+1)*a+1 => 2a+5-2a-1*a+1 => (2a-2a)+5-1*a+1
=> 4*a+1 => a+1 \(\in\) {-1;1;-4;4} => a \(\in\) {-2;0;-5;3}
b, Vì 264 chia a dư 24 => 264-24*a => 240*a
Vì 363 chia a dư 43 => 363-43*a => 320*a
=> \(a\inƯC\left(240;320\right)=\left\{2;4;5;8;20;10;40;80\right\}\)
2. Vì p nguyên tố > 3 => p có dạng là 3k+1 hoặc 3a+2
Nếu p = 3a+2 => p+4 = 3.a+2+4 = 3.a+6 chia hết cho 3 là hợp số (loại)
=> p = 3k+1 => p+8 = 3k+1+8 = 3k+9 chia hết cho 3 là hợp số
Vậy p+8 là hợp số (đpcm)
k nha bạn
* là dấu chia hết nha bạn