Cho (O;R) đường kính AB, M là một điểm thuộc (O) và MA < MB. Từ M kẻ đường vuông góc với AB tại H và cắt (O) tại điểm thứ hai là N. Trên tia đối của tia MN lấy điểm C. Nối C với B cắt đường tròn tại điểm thứ ba I. Giao điểm của AI với MN là K
a) Chứng minh tứ giác BHIK nội tiếp
b) Chứng minh CI.CB = CK.CH
c) Chứng minh IC là tia phân giác góc ngoài của tam giác MIN
d) Cho AH = \(\frac{R}{2}\). Tính diện tích hình quạt giới hạn bởi OB, ON và cung nhỏ BN.
bạn tự vẽ hình nha!!!!!!!!!!
a) xét đg tròn (o) có: góc AIB = 90 độ ( góc nt chắn nửa đg tròn) => góc KIB =90 độ
có góc MHB = 90 độ( MN vuông góc vs AB) => goc KHB = 90 độ
xét tg BHKI ta có: góc KHB = 90 độ ( cmt)
góc KIB = 90 độ (cmt)
==> góc KHB + góc KIB = 90 + 90 = 180 độ
mà 2 góc KHB và góc KIB ở vị trí đối nhau ==> tg BHKI nt( tổng 2 góc đối = 180 độ)
b) từ tg BHKI nt (cma) => góc CKI = góc IBH ( góc ngoài tại đỉnh K = góc trong của đỉnh đối diện B)
=> góc CKI = góc CBH ( I thuộc CB)
xét tam giác CIK và tam giác CHB ta có: góc C chung
góc CKI = góc CBH ( ctm)
==> tam giác CIK đồng dạng vs tam giác CHB (g.g)
=> \(\frac{CI}{CK}=\frac{CH}{CB}\)( tỉ số đồng dạng)
==> CI . CB= CK. CH ( đpcm)