K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

a) A(3;0)

b) B(0;3)

c) C(4;-1)

9 tháng 4 2020

Chuc bạn hok tốt !!!!!

nho tích cho minh

5 tháng 6 2017

a) Đúng. Giả sử A(a; b); O(0; 0) Giải bài tập Toán lớp 10

b) Đúng

c) Đúng

d) Đúng Vì tia phân giác của góc phần tư thứ nhất là đường thẳng y = x.

17 tháng 5 2017

a) Đúng
b) Đúng
c) Sai

1: Để hàm số đồng biến thì m-3>0

hay m>3

2: Thay x=0 và y=0 vào (d), ta được:

3m+7=0

hay \(m=-\dfrac{7}{3}\)

4 tháng 10 2021

. Chị ơi, chị có thể làm tiếp giúp em câu 3,4,5 đc ko ah?:)

a: \(A\left(3;y\right)\)

b: \(B\left(x;-3\right)\)

c: \(C\left(x,x\right)\)

d: \(D\left(x;-x\right)\)

NA
Ngoc Anh Thai
Giáo viên
22 tháng 5 2021

1. Gọi đường thẳng cần tìm là (d):  y = ax + b.

Giao điểm của (d) và Oy là A (0;2) =>  b = 2 (1).

Giao điểm của (d) và Ox là B (-2;0) => 2a  + b = 0 (2)

Từ (1) và (2) ta có a = -1, b = 2. Vậy (d): y = -x + 2.

2. \(\left\{{}\begin{matrix}mx-2x+y=3\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx-4x+2y=6\\3x-2y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2mx-x=m+6\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+6\\3x-2y=m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì pt \(x\left(2m-1\right)=m+6\) có nghiệm duy nhất. Khi đó \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}.\)

3.

2x + 3y + 5 = 0 ⇔ \(y=\dfrac{-2}{3}x-\dfrac{5}{3}\)

Để hai đường thẳng trùng nhau thì \(a=\dfrac{-2}{3};b=\dfrac{-5}{3}\).

4.

Bán kính đường tròn ngoại tiếp hình vuông là \(\dfrac{\sqrt{2}}{\sqrt{2}}=1\left(cm\right)\).

Độ dài đường tròn ngoại tiếp hình vuông là: 2π (cm).

câu trả lời của thầy nhanh và gọn thật

16 tháng 11 2021

\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)

\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)

PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)

\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề

\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm

\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)