Cho tam giác ABC có BC=a, CA=b, BA=c và diện tích là S. Biết \(S=b^2-\left(a-c\right)^2\). Tính tanB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé
Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)
Qua E kẻ đường thẳng song song BF cắt AC tại K
Theo ta-lét ta có:
\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)
Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I
Theo talet ta có
\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)
=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)
=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)
Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)
=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)
Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)
a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)
b) Hoàn toàn tương tự như câu a, ta có:
\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)
\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)
c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)
\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)
\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)
a ) Khi \(a=b=c\)
\(\Rightarrow S=\frac{1}{4}\sqrt{\left(3a^2\right)^2-6a^4}=\frac{1}{4}\sqrt{3a^4}\)
\(\Rightarrow S=\frac{a^2\sqrt{3}}{4}\)
Vậy diện tích tam giác đều cạnh a là \(S=\frac{a^2\sqrt{3}}{4}.\)
b ) Khi \(a^2=b^2+c^2\)
\(\Rightarrow S=\frac{1}{4}\sqrt{\left(2a^2\right)^2-2\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow S=\frac{1}{4}\sqrt{2\left(a^4-b^4-c^4\right)}\)
Từ \(b^2+c^2=a^2\)
\(\Rightarrow b^4+c^4+2b^2c^2=a^4,\)ta tính ra :
\(S=\frac{1}{4}\sqrt{4b^2c^2}\) \(\Rightarrow S=\frac{2}{4}b.c\) \(\Rightarrow S=\frac{1}{2}bc\)
Vậy diện tích tam giác vuông thì bằng \(\frac{1}{2}\) tích 2 cạnh góc vuông .
Ta có:
\(S=b^2-\left(a-c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=a^2+c^2-2ac\cos B-a^2-c^2+2ac\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=2ac\left(1-c\text{os}B\right)\)
\(\Leftrightarrow\sin B=4\left(1-c\text{os}B\right)\Leftrightarrow c\text{os}B=1-\dfrac{1}{4}sinB\left(1\right)\)
Mặt \(\ne:sin^2B+c\text{os}^2B=1\)
\(\Leftrightarrow sin^2B+\left(1-\dfrac{1}{4}sinB\right)^2=1\)
\(\Leftrightarrow\dfrac{17}{16}sin^2B-\dfrac{1}{2}sinB=0\)
\(\Leftrightarrow sinB=\dfrac{8}{17}\left(sinB>0\right)\)
Kết hợp với (1) ta đc: \(c\text{os}B=\dfrac{15}{17}\Rightarrow tanB=\dfrac{8}{15}\)