K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(BC=AB:\dfrac{3}{5}=6:\dfrac{3}{5}=10\left(cm\right)\)

=>AC=8cm

=>AH=4,8cm

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

19 tháng 9 2021

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

5 tháng 7 2021

Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HB=\dfrac{9}{16}HC\)

Ta có: \(AB^2=BH.BC=BH\left(BH+HC\right)=\dfrac{9}{16}HC\left(\dfrac{9}{16}HC+HC\right)\)

\(=\dfrac{9}{16}HC.\dfrac{25}{16}HC=\dfrac{225}{256}HC^2\)

\(\Rightarrow HC^2=\dfrac{256AB^2}{225}=\dfrac{16384}{25}\Rightarrow HC=\dfrac{128}{5}\left(cm\right)\)

\(\Rightarrow HB=\dfrac{72}{5}\Rightarrow BC=\dfrac{128+72}{5}=40\left(cm\right)\)

\(\Rightarrow AC=\sqrt{BC ^2-AB^2}=\sqrt{40^2-24^2}=32\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=\dfrac{96}{5}\left(cm\right)\)

NV
5 tháng 7 2021

\(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HC=\dfrac{16}{9}HB\)

Áp dụng hệ thức lượng:

\(AB^2=HB.BC=HB\left(HB+HC\right)\)

\(\Leftrightarrow24^2=HB.\left(HB+\dfrac{16}{9}HB\right)\)

\(\Rightarrow HB^2=\dfrac{5184}{25}\Rightarrow HB=\dfrac{72}{5}\left(cm\right)\)

\(HC=\dfrac{16}{9}HB=\dfrac{128}{5}\) (cm)

\(BC=HB+HC=40\) (cm)

\(AC=\sqrt{BC^2-AB^2}=32\) (cm)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}\left(cm\right)\)

27 tháng 7 2021

a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:

\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=64\Rightarrow AC=8\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

tam giác AHB vuông tại H có đường cao HD nên áp dụng hệ thức lượng

\(\Rightarrow AD.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=AE.AC\Rightarrow AE.AC=AD.AB\Rightarrow\dfrac{AD}{AE}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\)

b) Vì \(\angle ADH=\angle AEH=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật

\(\Rightarrow DE=AH\)

Ta có: \(BC.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=AH\)

\(\Rightarrow DE=BC.sinB.cosB\)

24 tháng 6 2021

a, Ta có : \(\dfrac{AB}{AC}=\dfrac{3}{4}=>\dfrac{3}{4}AC=AB\)

AB + AC = 21

3/4 AC + AC = 21

7/4 AC = 21

AC = 12 ( cm )

AB = 21 - 12 = 9 ( cm )

Áp dụng định lí Pytago vào tam giác , ta có :

BC ^ 2  = AB ^ 2 + AC ^ 2 = 12^2 + 9^2 = 225

-> BC = 15 ( cm )

24 tháng 6 2021

b, Áp dụng hệ thức lượng :

AH . BC = AB . AC 

-> AH = AB.AC / BC = \(\dfrac{9.12}{15}=7,2\left(cm\right)\)

AB^2 = BH . BC

-> BH = AB^2 / BC = \(\dfrac{81}{15}=5,4\left(cm\right)\)

AC^2 = HC . BC

-> HC = AC^2 / BC = \(\dfrac{144}{15}=9,6\left(cm\right)\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

nên \(AB=\dfrac{3}{7}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)

\(\Leftrightarrow AC^2=11368\)

\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)

hay BC=116(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)