Cho các số x, y, z thỏa mãn: 3(x + y) = 2(y + z) = 7(z + x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Bạn tham khảo tại đây:
https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762
Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)
\(\Rightarrow x^5< x^2\)
Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\); \(z< 1\Rightarrow z^7< z^2\)
\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)
\(\Rightarrow x^5+y^6+z^7< 1\)
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
\(\frac{x+y}{14}=\frac{y+z}{21}=\frac{x+z}{6}=K\)(chia tất cả cho 42)
x+y=14k; y+z=21k; x+z=6k.
\(2\left(x+y+z\right)=41k\Rightarrow x+y+z=20,5k\)
\(\Rightarrow x=20,5k-21k=-0,5k\)
\(\Rightarrow y=20,5k-6k=14,5k\)
\(\Rightarrow z=20,5k-14k=6,5k\)
vậy \(x=-0,5k;y=14,5k;z=6,5k\left(k\inℚ\right)\)