K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2022

loading...

loading...  

13 tháng 6 2019

A B C D P Q H

a) Xét tam giác BHP và tam giác CHB có: \(\widehat{HPB}=\widehat{HBC}\)( cùng phụ góc PBH) (1)

và \(\widehat{PHB}=\widehat{BHC}\left(=90^o\right)\)

=> tam giác BHP ~  tam giác CHB 

=> \(\frac{BH}{HC}=\frac{BP}{BC}\Leftrightarrow\frac{BH}{HC}=\frac{BQ}{DC}\)( vì BP=BQ, BC=DC)

Ta lại có : \(\widehat{HPB}=\widehat{HCD}\) ( so le trong) (2)

Từ (1) , (2) => \(\widehat{HBC}=\widehat{HCD}\)   =>  \(\widehat{HBQ}=\widehat{HCD}\)

Xét tam giác HBQ và tam giác HCD có:

\(\frac{BH}{HC}=\frac{BQ}{DC}\)\(\widehat{HBQ}=\widehat{HCD}\)

=>  tam giác HBQ ~tam giác HCD 

b)  Có:  tam giác HBQ ~tam giác HCD  ( theo a)

=> \(\widehat{DHC}=\widehat{QHB}\)

mà \(\widehat{QHB}+\widehat{QHC}=\widehat{BHC}=90^o\)

=> ​\(\widehat{DHC}+\widehat{QHC}=\widehat{DHQ}=90^o\)



 

10 tháng 11 2019

Cho hình vuông ABCD . Trên cạnh BA và BC lấy hai điểm P và Q sao cho BP = BQ . Kẻ BH vuông góc với PC . CM :

a) Tam giác BHP đồng dạng với tam giác CHB

b) BH/BQ=CH/CD

c) Tam giác DHC đồng dạng với tam giác QHB

d) Góc DHQ = 90O

13 tháng 6 2020
em chịu
NV
19 tháng 8 2021

Chi tiết \(BM=DN=\dfrac{a}{3}\) hoàn toàn không cần thiết

a.

Ta có: \(AC\perp BD\) tại O (2 đường chéo hình vuông) \(\Rightarrow O\) thuộc đường tròn đường kính AB

\(AH\perp BH\) (gt) \(\Rightarrow\) H thuộc đường tròn đường kính AB

\(\Rightarrow\) 4 điểm A,B,O,H cùng thuộc đường tròn đường kính AB hay tứ giác ABHO nội tiếp

Hoàn toàn tương tự, 4 điểm ADKO cùng thuộc đường tròn đường kính AD nên tứ giác ADKO nội tiếp

b.

Trong tam giác vuông ABM vuông tại B với đường cao BH, áp dụng hệ thức lượng:

\(AB^2=AH.AM\)

Tương tự, trong tam giác vuông ADN:

\(AD^2=AK.AN\)

Mà \(AB=AD=a\Rightarrow AH.AM=AK.AN\Rightarrow\dfrac{AH}{AN}=\dfrac{AK}{AM}\) (đpcm)

NV
19 tháng 8 2021

undefined