K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giúp mk 2 bài này với m.n ơi, 2 bài tự luận để mk ôn thi akBài 1/ Cho hình vuông ABCD cạnh a, tâm O. Hãy tính:a/ \(\overrightarrow{AB}.\overrightarrow{BC}\) ; \(\overrightarrow{AB}.\overrightarrow{BD}\) ; ( \(\overrightarrow{AB}+\overrightarrow{AD}\) )(\(\overrightarrow{BD}+\overrightarrow{BC}\)) ;   ...
Đọc tiếp

giúp mk 2 bài này với m.n ơi, 2 bài tự luận để mk ôn thi ak
Bài 1/ Cho hình vuông ABCD cạnh a, tâm O. Hãy tính:
a/ \(\overrightarrow{AB}.\overrightarrow{BC}\) ; \(\overrightarrow{AB}.\overrightarrow{BD}\) ; ( \(\overrightarrow{AB}+\overrightarrow{AD}\) )(\(\overrightarrow{BD}+\overrightarrow{BC}\)) ;

    (\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\))(\(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\)).
b/ \(\overrightarrow{ON}.\overrightarrow{AB}\) ; \(\overrightarrow{NA}.\overrightarrow{AB}\)  với N là điểm cạnh BC.
c/ \(\overrightarrow{MA}.\overrightarrow{MB}\) \(+\overrightarrow{MC}.\overrightarrow{MD}\) với M nằm trên đường nội tiếp hình vuông.
Bài 2/ Cho tam giác ABC, tìm tập hợp những điểm M thỏa mãn điều kiện sau:
a/ \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{MA}.\overrightarrow{MC}\)
b/ (\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\))(\(\overrightarrow{AC}-\overrightarrow{AB}\) ) = \(AB^2\)
c/ (\(\overrightarrow{MB}+\overrightarrow{MC}\))(\(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\))=0
M.N cứu mk với, mk sắp thì r cứu mk, THANK YOU VERY MUCH

0
29 tháng 10 2021

Vì khi đó hai vecto AB,AC sẽ cùng phương

=>AB//AC

mà AB và AC có điểm chung là A

nên A,B,C thẳng hàng

3 tháng 11 2021

thanks you very much yeu

26 tháng 1 2021

Gọi N là trung điểm BC

\(\left|\overrightarrow{MA}+\overrightarrow{MC}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MO}+2\overrightarrow{MB}+2\overrightarrow{OC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MC}+2\overrightarrow{MB}\right|=\left|\overrightarrow{AB}-\overrightarrow{AD}\right|\)

\(\Leftrightarrow4\left|\overrightarrow{MN}\right|=\left|\overrightarrow{BD}\right|\)

\(\Rightarrow\left|\overrightarrow{BD}\right|=4\left|\overrightarrow{MN}\right|=4\left|\overrightarrow{DN}+\overrightarrow{MD}\right|\ge4MD-4DN\)

\(\Rightarrow4MD\le BD+4DN\)

\(\Leftrightarrow MD\le\dfrac{BD+4DN}{4}=\dfrac{a\sqrt{2}+2a\sqrt{5}}{4}=\dfrac{2\sqrt{5}+\sqrt{2}}{4}a\)

1: \(=\left|\overrightarrow{CO}-\overrightarrow{CB}\right|=BO=\dfrac{a\sqrt{2}}{2}\)