tìm số nguyên x,y
a. 5(x+y) +2 = 3xy
b. 2( x+y) = 5xy
c. 3x+7= y(x-3)
d. xy+ 3x- y=6
e. 1/x + 1/y= 1/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
a) \(\left(x-2\right)\left(y+3\right)=15\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x-2\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y+3\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(x\) | \(3\) | \(17\) | \(1\) | \(-13\) | \(5\) | \(7\) | \(-1\) | \(-3\) |
\(y\) | \(12\) | \(-2\) | \(-18\) | \(-4\) | \(2\) | \(0\) | \(-8\) | \(-6\) |
KL: Các cặp số (x; y)...
b) \(\left(3x+2\right)\left(1-y\right)=-7\)
\(\Rightarrow\left(3x+2\right)\left(1-y\right)=1.\left(-7\right)=\left(-7\right).1=\left(-1\right).7=7.\left(-1\right)\)
Ta có bảng sau:
\(3x+2\) | \(1\) | \(-7\) | \(-1\) | \(7\) |
\(1-y\) | \(-7\) | \(1\) | \(7\) | \(-1\) |
\(x\) | \(-\dfrac{1}{3}\) | \(-3\) | \(-1\) | \(\dfrac{5}{3}\) |
\(y\) | \(8\) | \(0\) | \(-6\) | \(2\) |
KL: Các cặp số (x; y)...
c) \(xy-5x=14-\left(-1\right)\)
\(\Leftrightarrow x\left(y-5\right)=15\)
\(\Rightarrow x\left(y-5\right)=1.15=15.1=\left(-1\right).\left(-15\right)=\left(-15\right).\left(-1\right)=3.5=5.3=\left(-3\right).\left(-5\right)=\left(-5\right).\left(-3\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(15\) | \(-1\) | \(-15\) | \(3\) | \(5\) | \(-3\) | \(-5\) |
\(y-5\) | \(15\) | \(1\) | \(-15\) | \(-1\) | \(5\) | \(3\) | \(-5\) | \(-3\) |
\(y\) | \(20\) | \(6\) | \(-10\) | \(4\) | \(10\) | \(8\) | \(0\) | \(2\) |
KL: Các cặp số (x; y)...
c') \(xy+x=5\)
\(\Leftrightarrow x\left(y+1\right)=5\)
\(\Rightarrow x\left(y+1\right)=1.5=5.1=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(y\) | \(4\) | \(0\) | \(-6\) | \(-2\) |
KL: Các cặp số (x; y)...
d) Chưa tìm ra cách giải, chờ đã...
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...