so sánh : 2013^2014+2014/2013^2014 - 2014 và 2013^2014-2014/2013^2014-6042
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(A=\frac{2014^{2013}+1}{2014^{2013}-1}=\frac{2014^{2013}-1+2}{2014^{2013}-1}=1+\frac{2}{2014^{2013}-1}\)
\(B=\frac{2014^{2013}-1}{2014^{2013}-3}=\frac{2014^{2013}-3+2}{2014^{2013}-3}=1+\frac{2}{2014^{2013}-3}\)
\(\Rightarrow\frac{2}{2014^{2013}-1}< \frac{2}{2014^{2013}-3}\)
\(\Rightarrow1+\frac{2}{2014^{2013}-1}< 1+\frac{2}{2014^{2013}-3}\)
=> A < B
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)